INITIALIZATION Knowledgebase: ki-dev Base Query: discuss the paper Model: gemini-1.5-pro-preview-0409 Use Curl?: None ================================================== QUESTIONING Clarity Score: 2 Give follow-up?: True Follow-up query: Welches spezifische Papier möchten Sie besprechen? ================================================== ROUTING Query type: summary ================================================== RAG PARAMETERS Max Context To Include: 100 Lowest Score to Consider: 0.1 ================================================== VECTOR SEARCH ALGORITHM TO USE Use MMR search?: True Use Similarity search?: False ================================================== PRIMER Primer: You are a highly intelligent personal assistant. Your role is to act as an expert at summarization and analysis. In your responses to enterprise users, prioritize clarity, trustworthiness, and appropriate formality. Be honest by admitting when a topic falls outside your scope of knowledge, and suggest alternative avenues for obtaining information when necessary. Make effective use of chat history to avoid redundancy and enhance response relevance, continuously adapting to integrate all necessary details in your interactions. Use as much tokens as possible to provide a detailed response. Your answer must be in German language. Your tone must be neutral. Your writing style must be standard. ================================================== FINAL QUERY Final Query: CONTEXT: ########## File: SP.txt Page: 1 Context: SP #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 1 Context: Enhancing Long-Term Traffic Congestion Forecasting: Evaluating Machine Learning and Deep Learning Models Using the PeMS Dataset An Undergraduate Special Problem Presented to the Faculty of the Department of Computer Science, University of the Philippines Cebu Cebu City In Partial Fulfillment of the Requirements for the Degree Bachelor of Science in Computer Science Jeff Erl layahin BS Computer Science Dhong Fhel K. Gom-os Adviser 2024 LIST OF FIGURES #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 2 Context: FigureNo1.DatasetLocationofPeMS-bays62.TrafficPredictionModelWorkflow15 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 3 Context: TableNo1.Lane1ResultsofShort-TermPrediction162.Lane2ResultsofShort-TermPrediction163.Lane3ResultsofShort-TermPrediction164.Lane4ResultsofShort-TermPrediction165.Lane5ResultsofShort-TermPrediction176.Lane6ResultsofShort-TermPrediction177.Lane7ResultsofShort-TermPrediction178.Lane1ResultsofMid-TermPrediction179.Lane2ResultsofMid-TermPrediction1810.Lane3ResultsofMid-TermPrediction1811.Lane4ResultsofMid-TermPrediction1812.Lane5ResultsofMid-TermPrediction1813.Lane6ResultsofMid-TermPrediction1914.Lane7ResultsofMid-TermPrediction1915.Lane1ResultsofLong-TermPrediction1916.Lane2ResultsofLong-TermPrediction1917.Lane3ResultsofLong-TermPrediction2018.Lane4ResultsofLong-TermPrediction2019.Lane5ResultsofLong-TermPrediction2020.Lane6ResultsofLong-TermPrediction2021.Lane7ResultsofLong-TermPrediction2122.PerformanceofBestResultsofEveryOutsetpsforEveryModels2123.BestPerformingModelsforShort,MidandLongTermPrediction21 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 4 Context: TABLEOFCONTENTSPageTITLEiLISTOFFIGURESiiTABLEOFCONTENTSiiiCHAPTERINTRODUCTION11.1BackgroundoftheStudy11.2ResearchObjectives11.3ScopeandLimitation21.4SignificanceoftheResearch2CHAPTERREVIEWOFLITERATURE22.1TrafficCongestionForecasting32.2Long-TermTrafficCongestionForecasting42.3Long-termtrafficcongestionpredictionmodels5CHAPTERMETHODOLOGY33.1Introduction63.2DataCollectionandDataProcessing63.3FeatureExtractionwithBiLSTM73.4IncorporatingSTTFforSpatialAnalysis83.5HybridModelIntegration93.6BaselinModel103.7PerformanceEvaluation10CHAPTER6RESULTS16CHAPTER5DISCUSSIONS22CHAPTER6CONCLUSION28CHAPTER7RECOMMENDATIONSFORFUTUREWORK29REFERENCES31APPENDIX33 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 5 Context: ABSTRACTTrafficcongestionforecastingisvitalforurbanplanningandtrafficmanagement,providinginsightsforreducingcongestionandimprovingcommuterexperiences.Thisstudyevaluatesvariousmachinelearninganddeeplearningmodels,includingDense,CNN,LSTM,Bi-LSTM,TCN,Transformer,andhybridmodels,usingthePeMSdataset.OurfindingsindicatethattheDensemodelexcelsinshort-termforecasting(outstep3),whiletheHybridmodeldemonstratessuperiorperformanceinmedium-term(outstep6)andlong-term(outstep12)forecasting.However,thestudyfacedcomputationallimitationswithGoogleColab,suggestingfutureresearchshouldutilizemorepowerfulplatformslikeAWSorGCP.Additionally,integratingdiversedatasetsandexternaldatasourcessuchasweatherandeventscanfurtherenhancemodelaccuracy.Interdisciplinarycollaborationiscrucialtoensurethepracticalrelevanceandtechnicalrobustnessofdevelopedmodels.Keywords:TrafficCongestionForecasting,IntelligentTransportationSystems,MachineLearning,DeepLearning,PeMSDataset,Long-termForecasting,HybridModels,ComputationalTools. #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 6 Context: tesspatio-temporaldatatoprovideaccuratelong-termcongestionpredictions,therebysupportingmoreinformeddecision-makinginurbanplanningandtrafficmanagement.SpecificObjectives●Toanalyzeexistingtrafficcongestionforecastingmodelsandidentifytheirlimitationsinlong-termpredictionaccuracy.●DesignahybridmodelintegratingCNNs,LSTMs,andTransformercomponentstoimprovespatio-temporalfeatureextractionandsequenceanalysisforbetterlong-termtrafficforecasting.●TovalidatetheproposedmodelusingthePeMS-Baydataset,ensuringitsabilitytoaccuratelyforecasttrafficcongestion.1 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 6 Context: CHAPTER1INTRODUCTIONBackgroundoftheStudyInanerawhereurbanizationisrapidlyadvancing,trafficcongestionhasemergedasacriticalissueinurbanplanningandtrafficmanagement.Congestionnotonlycontributestoincreasedtraveltimesbutalsoaffectseconomicproductivityandenvironmentalsustainability.Recentstudieshaveutilizedspatio-temporalelementsintrafficforecastingmodelstopredictcongestionpatternswithavaryingdegreeofsuccess(Sunetal.,2021).Whileshort-termforecastinghasseenconsiderableimprovements(Bernaśetal.,2015;Wangetal.,2020),long-termforecastingremainsachallenge.Currentmodelstendtoloseaccuracyovertime,whichisproblematicaslong-termforecastsareessentialforplanningandmanagingtrafficwithaforward-lookingapproach(Emamietal.,2019;Songetal.,2021).Theneedtoaddressthesechallengesisunderscoredbythedynamicnatureofurbantraffic,whichrequiresrobustpredictionmodelsthatcanadapttochangeandmaintainaccuracy.ResearchObjectivesGeneralObjectiveTodevelopanadvancedtrafficforecastingmodelthateffectivelyintegratesspatio-temporalda #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 7 Context: entanovelapproachthatcanbeadaptedandscaledforvariousurbansettings.Thedevelopmentofarobustandaccuratelong-termforecastingmodelalignswiththebroadergoalsofsmartcityinitiatives,aimingtoenhancetheefficiencyandsustainabilityofurbantransportsystems.Theimplicationsofthisresearchextendbeyondthepracticalapplicationsintrafficmanagement,offeringinsightsintotheutilizationofhybriddeeplearningarchitecturesforcomplexspatio-temporaldataanalysis.2 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 7 Context: ●Toevaluatethemodel'sperformanceagainstestablishedmetricssuchasMAE,RMSE,andMAPE,andbenchmarkitagainstcurrentleadingmodelsinthefield.ScopeandLimitationThisresearchisfocusedonthedevelopmentofapredictivemodelforlong-termtrafficcongestionforecastingusingmachinelearninganddeeplearningtechniques.Thescopeincludesthedesign,implementation,andvalidationofthemodelusingtrafficdatafromthePeMS-Baydataset.Limitationsoftheresearchmayarisefromthecomplexityofintegratingmultipleadvancedlearningtechniquesandthecomputationaldemandsofprocessinglargedatasets.Furthermore,themodel'sperformancewillbeevaluatedinthecontextofthedataavailablefromtheBayArea,whichmaylimititsimmediateapplicabilitytoothergeographiclocationswithoutfurtheradaptation.SignificanceoftheResearchThesignificanceofthisresearchliesinitspotentialtocontributetothefieldofComputerSciencebypushingtheboundariesofpredictivemodelingintrafficmanagement.Byaddressingthecurrentgapinlong-termtrafficcongestionforecasting,thestudyaimstopresentanovelapproachtha #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 8 Context: CHAPTER2REVIEWOFLITERATURETrafficcongestionhasbeenasubjectofextensiveresearchwithinthefieldofintelligenttransportationsystems.Ascitiesexpandandthedemandforefficientmobilitygrows,theabilitytoaccuratelyforecasttrafficcongestionbecomesincreasinglysignificant.Thischapterpresentsasynthesisofthecurrentliteraturesurroundingtrafficcongestionforecasting.Itprovidesanoverviewofthemethodologiesandtechnologiesthathavebeendevelopedandhighlightsthechallengesthatpersist,particularlyinthedomainoflong-termprediction.Theliteraturereviewexaminestheevolutionoftrafficpredictionmodelsfromtraditionalstatisticalapproachestosophisticatedmachinelearninganddeeplearningmethods.Italsoexploreshowthesemodelshaveincorporatedcomplexspatio-temporaldataandroadnetworkinformationtoenhancepredictiveaccuracy.Thischapterlaysthegroundworkforunderstandingthecurrentstateoftrafficcongestionforecastingandsetsthestagefortheresearchproposedinthisstudy.TrafficcongestionforecastingTrafficcongestionforecastingisacrucialaspectofintellig #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 8 Context: ngmodelsofteninvolvereal-timedataanalysis,leveragingsensorsandcamerastogathercomprehensivetrafficdata.Thisdataisanalyzedusingsophisticatedalgorithmstopredicttrafficpatterns,identifypotentialbottlenecks,andsuggestoptimalcommuterroutes(Sunetal.,2021).Despitetheseadvancements,maintainingaccuracy,especiallyoverextendedperiods,remainsasignificantchallengeintrafficcongestionforecasting.Thecapabilitytopredicttrafficflowaccuratelyandinreal-timeisessentialforeffectiveurbantrafficmanagement,markingitasacriticalareaofongoingresearchanddevelopmentwithinintelligenttransportsystems.3 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 8 Context: cialaspectofintelligenttransportsystems,playingapivotalroleinthemanagementofurbantraffic.Itsimportancestemsfromitscapacitytopredictvehicularpatterns,aidinginefficienturbanplanning,congestionmitigation,andimprovingoverallcommutingexperiences(Bernaśetal.,2015).Accurateforecastsenablecityadministratorsandtransportauthoritiestomakeinformeddecisionsintrafficcontrol,infrastructuredevelopment,andpublictransportationscheduling.Thechallengeinforecastingtrafficcongestionisnotonlypredictingvehicleflowbutalsointegratingcomplexvariablessuchascommuterbehaviors,roadcapacities,andexternalfactorslikeweatherandspecialevents(Wangetal.,2020).Thiscomplexityhighlightsthesignificanceoftrafficcongestionforecastinginurbantrafficmanagement,aimingtofacilitatesmoothtrafficflowandminimizecongestionissues.Themethodologiesandapproachesintrafficcongestionforecastinghaveevolved,transitioningfromtraditionalmodelstoadvancedtechniquesutilizingbigdataandartificialintelligence(AI).Moderntrafficforecastingmodelsofteninvolve #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 9 Context: lsthateffectivelyintegrateandanalyzeavarietyofdatasources.Theseincludereal-timetrafficdata,urbandevelopmentplans,andinputsfromurbanplannersandpolicymakers.UtilizingAI,particularlyinareassuchasneuralnetworksandpredictiveanalytics,isseenaskeytoenhancingthelong-termforecastingaccuracy.Theultimateaimistocreaterobustmodelsthatnotonlypredicttrafficpatternswithhighprecisionbutalsoaidinmakinginformeddecisionsforsustainableurbangrowthandefficienttrafficmanagement.4 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 9 Context: icshifts,allofwhichcansignificantlyaltertrafficpatternsovertime(Chenetal.,2020;Wangetal.,2022).Totacklethesecomplexities,researchersareturningtoadvancedmodelingtechniquesthatincorporatemachinelearninganddeeplearning.Thesemodelsaimtolearnfromextensivedatasets,adapttochangingurbandynamics,andprovidemoreaccurateforecastsforlongerdurations(Huangetal.,2023;Emamietal.,2019).However,anotablegappersistsintheaccuracyoflong-termtrafficpredictions.Despitetheintegrationofsophisticatedspatio-temporalelements,thesemodelsoftenexperienceadeclineinpredictiveperformanceovertime.Thisdeclineismainlyduetotheinabilityofcurrentmodelstofullycapturetheevolvingcomplexitiesofurbantrafficsystemsandexternalinfluencessuchasurbandevelopmentandpolicychanges(Songetal.,2021;Emamietal.,2019).Therefore,enhancingtheadaptabilityandaccuracyofthesemodelsoverextendedperiodsremainsacriticalareaoffocusinurbantrafficmanagement.Lookingahead,thefutureoflong-termtrafficcongestionforecastinghingesondevelopingmodelsthateffectivelyint #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 9 Context: Long-TermTrafficCongestionForecastingLong-termtrafficcongestionforecastingisanareaofurbanplanningthatextendsbeyondtheimmediatehorizonofshort-termtrafficpredictions.Whileshort-termforecasting,whichusuallyspansafewminutestohours,iscrucialforday-to-daytrafficmanagement,itoftenfallsshortinaddressingthecomplexitiesofurbangrowthandinfrastructuralchangesthatimpacttrafficpatternsovermonthsoryears(Emamietal.,2019;Songetal.,2021).Theselimitationsunderscoretheneedforlong-termforecasting,whichaimstopredicttrafficconditionsoverextendedperiods,suchasdays,months,oryears.Thistypeofforecastingisessentialforstrategicurbanplanning,policy-making,andlong-terminfrastructuraldevelopments,asitconsidersbroaderfactorslikedemographicchanges,urbandevelopmenttrends,andemergingtransportationtechnologies(Sunetal.,2021;Kongetal.,2019).Thechallengeinlong-termforecastingliesinitsdynamicnature.Urbanenvironmentsareconstantlyevolvingduetofactorslikeurbanization,technologicaladvancements,andsocio-economicshifts,allofwhichc #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 10 Context: nlong-termcongestionpredictionmodels.CNNModelfortrafficforecasting:Thepaper"Short-termtrafficflowpredictionbasedonspatio-temporalanalysisandCNNdeeplearning"byWeibinZhangetal.(2019)presentsamodelthatemploysconvolutionalneuralnetworks(CNN)toforecastshort-termtrafficflowbyassessingbothspatialandtemporalfeatures.Thespatio-temporalfeatureselectionalgorithm(STFSA),whichthispaperpresents,canhelptraditionalmodelsmakebetteruseofthesefeaturesby5 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 10 Context: Long-termtrafficcongestionpredictionmodelsDiverseForecastingMethodsinLong-TermPrediction:Thepursuitofeffectivelong-termtrafficcongestionpredictionmodelshasledtotheexplorationofvariousforecastingmethods.Beyondthestandardlinear,nonlinear,andneuralnetworkapproaches,thereisanincreasingfocusonintegratingdiversemethodologiestoaddressthecomplexnatureoflong-termtrafficdynamics.Forinstance,studieshaveexploredtheuseofAutoregressiveIntegratedMovingAverage(ARIMA)models,whicharetraditionallyusedfortime-seriesprediction,andcombinedthesewithEmpiricalModeDecomposition(EMD)toenhanceshort-termpredictioncapabilities.Thishybridapproach,asdemonstratedbyWangetal.(2022),signifiesthepotentialofcombiningtraditionalstatisticalmodelswithmoderntechniquestoimprovelong-termforecasting.Spatio-TemporalAnalysisinTrafficPrediction:Recognizingtheimportanceofspatialandtemporaldynamicsintrafficpatterns,recentstudieshaveemphasizedtheinclusionofspatio-temporalanalysisintrafficforecastingmodels.Thisapproachinvolvesunderstand #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 10 Context: chinvolvesunderstandinghowtrafficconditionsatonelocationinfluence,andareinfluencedby,conditionsinotherareasovertime.AdvancedmodelslikeConvolutionalNeuralNetworks(CNN)andLongShort-TermMemory(LSTM)networkshavebeenadaptedtocapturethesespatio-temporalrelationships.Forexample,LSTMnetworks,knownfortheirtemporallearningcapabilities,havebeenusedalongsideCNNstolearnspatialfeatures,thusprovidingamorecomprehensiveanalysisoftrafficcongestionpatternsoverextendedperiods(Zhangetal.,2022)IntegrationofRoadNetworkInformation:Acriticalaspectinenhancinglong-termtrafficcongestionpredictionistheintegrationofroadnetworkstructureinformation.Recentmodelshaveattemptedtoincorporatethisdataintotheiranalysis.Forinstance,GraphConvolutionalNetworks(GCN)havebeenusedtomodeltheinterconnectivityofroadnetworks,allowingforamorenuancedunderstandingoftrafficflowandcongestiondynamics.Thisapproach,asseeninstudiesbyHuangetal.(2023),highlightstheimportanceofconsideringthephysicallayoutandconnectivityofroadsinlong-termcongestion #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 11 Context: er-DecoderArchitecture"highlighttheeffectivenessoftheproposedmodelinforecastinglong-termtrafficflows.UsingtheCaltransPerformanceMeasurementSystem(PeMS)dataset,themodeldemonstratedsuperioraccuracyandstabilitycomparedto6 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 11 Context: coder-DecoderArchitecture"byZhumeiWang,XingSu,andZhimingDingintroducesaninnovativemethodforpredictingtrafficpatternsoverlongperiods.Traditionalmodelsmainlyhandleshort-termpredictionsandoftenstrugglewithaccuracywhenextendedtolongertimeframes.Totacklethis,theauthorsdesignedadeeplearningmodelthatcombinesanLSTMencoder-decoderstructurewithahardattentionmechanismandacalibrationlayer.Thissetuphelpsthemodelrememberpasttrafficpatternsbetterandreduceserrorsthattypicallyaccumulateinlong-termforecasts(Wang,Su,&Ding,2021).Themodelwastestedusingreal-worldtrafficdatafromLosAngeles,showingitoutperformedotheradvancedpredictionmethods,provingmoreaccurateandstable.Byeffectivelycapturingbothlocaltrafficdetailsandlong-termtrends,thismodelofferssignificantimprovementsfortrafficmanagementandplanning.Theresearchersplantoenhancethemodelfurtherbyincludingspatial-temporalfeaturesandotherfactorsthatinfluencetraffic(Wangetal.,2021).Theresultsofthepaper"Long-TermTrafficPredictionBasedonLSTMEncoder-DecoderArchitectu #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 11 Context: identifyingtheidealinputdata.Afterthis,theCNNusesatwo-dimensionaltrafficdatamatrixtobuildapredictionmodel.Thesuggestedapproachsuccessfullycapturesandlearnsthepertinenttrafficfeatures,outperformingcurrentmodelsinaccuracy.Thestudyoffersimprovedtoolsfortrafficmanagementandplanningbydemonstratingnotableadvancementsintrafficflowprediction.Theresultsoftheresearchshowthatthesuggestedmodelperformsmuchbetterinshort-termtrafficflowpredictionthantraditionalmodels.Itdoesthisbycombiningspatio-temporaldatawithaconvolutionalneuralnetwork(CNN).IncomparisontobaselinemodelslikeSARIMA,SVR,KNN,andANN,theCNNmodeldemonstratedlowermeanabsolutepercentageerror(MAPE)andmeanabsoluteerror(MAE)whenaugmentedusingthespatio-temporalfeatureselectionalgorithm(STFSA).TheCNN+STFSAmodeldemonstrateditsefficacyinidentifyingintricatetrafficpatternsbyachievingthemaximumaccuracyacrossmultipleforecastperiods(5,10,15,and20minutes).LSTMModelfortrafficforecasting:Thepaper"Long-TermTrafficPredictionBasedonLSTMEncoder-DecoderArchite #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 12 Context: icspeeddatathatisextractedfromCNNonadailyandweeklybasis.Whencomparedtofivebaselinetechniques—SVR,MLP,Lasso,RandomForest,andLSTM—themodeloutperformedtheminforecastingtrafficspeedsthroughoutarangeofforecastdurations.ThetestswereconductedusingactualtrafficdatafromHongKong.AccordingtoCao,Li,andChan(2020),theCLMmodeldemonstratedreducedmeanabsoluteerror(MAE),rootmeansquareerror(RMSE),aswellasincreasedcoefficientofdetermination(R²)andexplainedvariancescore(EVS).Thesefindingsvalidatethemodel'sefficacyincapturingintricatetrafficpatternsandyieldingpreciseforecastsfortrafficmanagementandplanning.7 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 12 Context: traditionalmethodslikeSupportVectorRegression(SVR)andLSTM,aswellasadvancedtechniquessuchastheEK-NNandSs2smodels.TheAttentionCalibrationEncoder-Decoder(ACE-D)modelachievedapproximately5%higheraccuracyinvarioustestingscenarios,predictingtrafficflowsforfuturehorizonsof50,80,100,150,and288timesteps.TheACE-Dmodelmaintainedlowererrorratesandprovedtobeparticularlyrobustinlong-termpredictions,showinglesserroraccumulationandgreaterstabilityovertime.Byeffectivelycapturingbothlocalfeaturesandlong-termdependenciesinthetrafficdata,theACE-Dmodeloffersamorereliablesolutionforlong-termtrafficprediction,enhancingtransportationplanningandmanagement(Wang,Su,&Ding,2021).CNN-LSTMModelfortrafficforecasting:Thepaper"ACNN-LSTMModelforTrafficSpeedPrediction"byMiaomiaoCao,VictorO.K.Li,andVincentW.S.ChanpresentsanovelmodelcombiningConvolutionalNeuralNetworks(CNN)andLongShort-TermMemory(LSTM)forpredictingtrafficspeeds.Thismodel,calledCLM,usesLSTMlayerstointegratespatiotemporalfeatureswithtrafficspeeddatathatisext #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 13 Context: CHAPTER 3 METHODOLOGY This chapter outlines the methodology employed in developing an advanced model for long-term traffic congestion forecasting. 3.1 Introduction The primary objective of this methodology is to develop and assess various advanced neural network models, including Dense, CNN, LSTM, BiLSTM, CNN-LSTM, TCN, Transformer, and a Hybrid CNN-LSTM-Transformer model, for improved long-term traffic congestion forecasting. The methodology will be divided into several key stages: Data Collection and Preprocessing, Model Training, Model Optimization, and Performance Evaluation. 3.2 Data Collection The PeMS-Bay dataset, a public traffic dataset collected by the California Transportation Agencies, serves as the primary data source for this study. The dataset encompasses six months of traffic speed data, spanning from January to February 2023, collected from 325 sensors strategically positioned on highways in the Bay Area, Los Angeles. This dataset is illustrated in Figure 1, showcasing the extensive sensor coverage along major highways and intersections, thereby offering a comprehensive view of traffic dynamics in the region. Figure 1. Dataset Location of PeMS-bay 8 ee dee 5.9 ee Er L #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 14 Context: 3.3DataPreprocessingDatapreprocessingisacriticalstepinensuringthequalityandusabilityofthedatasetforsubsequentanalysisandmodeltraining.Initially,mapmatchingwillbeemployedtoalignthesensordatawithspecificroadsegments,ensuringthespatialaccuracyofthedataset.Followingthis,thedatasetwillundergonormalizationofspeeddata,adoptingthemethodologyoutlinedbyLietal.(2018).Thisnormalizationstepisessentialtostandardizethedataandfacilitatecomparisonacrossdifferentsensorsandtimeperiods.Giventhedataset'sgranularity,withdatacollectionintervalsofevery5,10,and15minutes,handlingmissingvaluesbecomesparamount.Forthisstudy,anymissingdatapointswillbefilledwithzeroes.Thisapproachensuresaconsistentandcompletedataset,crucialfortrainingmachinelearningmodelsthatrequireuninterruptedtimeseriesdata.Additionally,anypotentialoutliersoranomaliesinthedatawillbeidentifiedandaddressedtomaintaindataintegrity.3.3.1StationSelectionDuetolimitedcomputationalresources,thisstudyfocusesonasubsetofthedataset,specificallydatafrom10randomlyselectedstations.Thisselectionensuresmanageabilitywhilestillprovidingarepresentativesampleforanalysis.Thestationsareselectedrandomlytoavoidanyselectionbias,andthedatafromthesestationsisusedforallsubsequentsteps.3.3.2FeatureEngineeringFeatureengineeringinvolvesextractingrelevantfeaturesfromtherawdatatoenhancethepredictivepowerofthemachinelearningmodels.Inthisstudy,keyfeaturesincludelane-specifictrafficflow,averageoccupancy,andaveragespeed.Foreachlane,thesefeaturesareextractedandaggregatedtoformacomprehensivesetofpredictors.Thisprocessisautomatedusingcustomfunctionsthatiterateoverthelanestoextractandcompilethenecessaryfeatures,ensuringarobustandscalablefeatureextractionpipeline.3.3.3Normalization𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡=𝑑𝑎𝑡𝑎𝑠𝑒𝑡−µ ⁄σBeforefeedingthedataintomachinelearningmodels,itundergoesnormalizationtoensurethatallfeaturescontributeequallytothemodeltrainingprocess.Normalizationisperformedbysubtractingthemeananddividingbythestandarddeviationofeachfeature.Thistransformationensuresthatthedatahasameanofzeroandastandarddeviationofone,whichiscrucialfortheconvergenceofgradient-basedoptimizationalgorithmsusedintrainingdeeplearningmodels.9 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 15 Context: datathroughitsmultiplelayersofneurons.Thismodelis10 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 15 Context: 3.3.4DataSplitting𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎=𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡[0:𝑖𝑛𝑡(𝑛⋅0.7)]𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎=𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑖𝑛𝑡(𝑛⋅0.7):𝑖𝑛𝑡(𝑛⋅0.9)]𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎=𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑖𝑛𝑡(𝑛⋅0.9):𝑛]Thedatasetisdividedintotraining,validation,andtestingsetstoevaluatetheperformanceandgeneralizabilityofthemodels.Specifically,70%ofthedataisallocatedfortraining,20%forvalidation,andtheremaining10%fortesting.Thissplitensuresthatthemodelsaretrainedonasubstantialportionofthedatawhilebeingvalidatedandtestedonindependentsubsetstopreventoverfittingandtoassessperformanceobjectively.3.3.5WindowGenerationTocapturetemporaldependenciesinthetrafficdata,awindow-basedapproachisemployed.Thedataissegmentedintooverlappingwindowsoffixedsize,witheachwindowservingasasampleforthemodel.AcustomWindowGeneratorclassisdevelopedtofacilitate #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 15 Context: evelopedtofacilitatethisprocess.Theclasshandlesthecreationofinputandlabelwindows,ensuringthatthetemporalstructureofthedataispreserved.Thisapproachenablesthemodelstolearnpatternsovertime,whichisessentialforaccuratetrafficprediction.3.5TraditionalModelsThetraditionalmodelsencompassseveralstandardarchitectureswidelyusedintimeseriesforecastingandtrafficpredictiontasks.ThesemodelsincludeDense,CNN,LSTM,Bi-LSTM,TCN,andTransformer.Eachmodelhasuniquestrengthsinhandlingdifferentaspectsofthedata,andtheyareevaluatedusingthesamedatasetandperformancemetricstoensureafaircomparisonwiththehybridmodels.DenseModel(FullyConnectedNeuralNetwork):Architecture:●InputLayer:Acceptstheinputsequences.●LambdaLayer:Processesthelasttimestepoftheinputsequence.●DenseLayer:Fullyconnectedlayerwith512neuronsandReLUactivation.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:TheDenseModelcapturesbothlinearandnon-linearrelationshipsinthedatathroughitsmultip #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 16 Context: Mnetworksarepowerfulformodelingsequentialdatabecausetheycanmaintainandupdateinformationoverlongperiods.Thisabilitymakesthemparticularlyusefulfortimeseriesforecasting,wherepastdatapointscaninfluencefutureoutcomes.LSTMsareexcellentathandlingthetemporaldependenciesinherentintrafficdata.BidirectionalLongShort-TermMemory(Bi-LSTM)Network:Architecture:●InputLayer:Acceptstheinputsequences.●BidirectionalLSTMLayer:Processesthesequencedatainbothforwardandbackwarddirectionswith64LSTMunits.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.11 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 16 Context: straightforwardbutcanbehighlyeffectiveformanytypesofpredictivetasks,providingabaselineformorecomplexmodels.ConvolutionalNeuralNetwork(CNN):Architecture:●InputLayer:Acceptstheinputsequences.●LambdaLayer:Focusesonthelastfewtimestepsofthesequence.●ConvolutionalLayer:Appliesa1Dconvolutionalfilterwith256neuronsandReLUactivation.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:CNNsareparticularlyadeptatextractingspatialfeaturesfromthedata.Theyarewell-suitedforidentifyinglocalpatternsandtrends,whicharecrucialinunderstandingtrafficflowandcongestionpatterns.Byusingfiltersandpoolingoperations,CNNscanreducethecomplexityofthedatawhileretainingimportantfeatures.LongShort-TermMemory(LSTM)Network:Architecture:●InputLayer:Acceptstheinputsequences.●LSTMLayer:Processesthesequencedatawith64LSTMunits.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:LSTMnetworksarepowerful #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 17 Context: nputLayer:Acceptstheinputsequences.●TransformerEncoderLayers:Appliesmulti-headattentionmechanismsandfeedforwardneuralnetworkswithineachtransformerblock.●GlobalAveragePoolingLayer:Summarizesthesequenceintoafixed-lengthvector.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:Transformersarehighlyeffectiveforsequencemodelingtasksduetotheirabilitytocapturedependenciesoverlongdistanceswithoutthe12 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 17 Context: Description:Bi-LSTMsareparticularlyeffectiveforcapturingcontextfrombothpastandfuturedatapointssimultaneously.Thisdualprocessingcapabilityenhancesthemodel'sabilitytounderstandandpredictcomplextemporalpatterns,makingBi-LSTMswell-suitedfortaskswherefuturecontextisasimportantaspastcontextinmakingaccuratepredictions.TemporalConvolutionalNetwork(TCN):Architecture:●InputLayer:Acceptstheinputsequences.●TCNLayers:UtilizesTemporalConvolutionalNetworklayerswith64filtersandvariousdilationrates.●DenseLayer:Fullyconnectedlayerwith128neuronsandReLUactivation.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:TCNsprovideanalternativetorecurrentnetworkslikeLSTMsforsequencemodeling.Theyaredesignedtohandlelong-rangedependenciesandcanoftenachievebetterperformancewithfewerparameters.TCNsareparticularlyeffectiveatcapturingthetemporalpatternsintrafficdatawithouttheneedforrecurrentconnections.TransformerModel:Architecture:●InputLayer:Acceptsthe #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 18 Context: sbyapplyingconvolutionalfilterstotheinputdata,identifyinglocalpatternssuchastrafficcongestionatspecificlocations.Followingthis,theLSTMlayerscapturetemporaldependenciesbyprocessingthesequencedata,makinguseoftheirmemorycellstoretaininformationoverlongperiods.Thiscombinationallowsthemodeltoleveragebothspatialcorrelationsandtemporalsequences,leadingtomoreaccuratetrafficpredictions.CNN-LSTM-TransformerHybridModelArchitecture:●InputLayer:Acceptstheinputsequences.●ConvolutionalLayer:Appliesa1Dconvolutionalfilterwith64neuronsandReLUactivation.13 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 18 Context: limitationsofrecurrentmodels.Theyuseself-attentionmechanismstodynamicallyfocusonrelevantpartsoftheinput,makingthemwell-suitedforcomplextimeseriesforecastingtasksliketrafficprediction.3.6HybridModelsInthestudyTwohybridmodels:aCNN-LSTMmodelandaCNN-LSTM-Transformermodelwereassessed.Thesemodelsintegratedifferentneuralnetworkarchitecturestoleveragetheiruniquestrengths,providingacomprehensiveapproachtotrafficforecastingbycapturingbothspatialandtemporalfeaturesfromthedata.CNN-LSTMHybridModel:Architecture:●InputLayer:Acceptstheinputsequences.●ConvolutionalLayer:Appliesa1Dconvolutionalfilterwith64neuronsandReLUactivation.●MaxPoolingLayer:Reducesthedimensionalityofthedata.●LSTMLayers:Processesthesequencedatawith128LSTMunitsintwolayers.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.●Description:ThishybridmodelcombinesConvolutionalNeuralNetworks(CNN)withLongShort-TermMemory(LSTM)networks.TheCNNlayersextractspatialfeaturesbyapplyingconvoluti #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 19 Context: omonitortrainingprogress.ThemodelsarecompiledwiththeHuberlossfunctionandoptimizedusingtheStochasticGradientDescent(SGD)optimizerwithmomentum.Toassesstheperformanceofthemodels,wewillemploythreeestablishedevaluationmetricscommonlyusedintrafficforecastingresearch:MeanAbsoluteError(MAE),RootMeanSquaredError(RMSE),andMeanAbsolutePercentageError(MAPE).Thesemetricsarewidelyrecognizedinthefieldandprovidevaluableinsightsintotheaccuracyandreliabilityofpredictivemodels(Hyndman&Koehler,2006).Toenhancetheclarityandvisualcomparabilityoftheresults,wewillscaletheMAEandRMSEvaluesbyafactorof50.Thisscalingensuresthattheevaluationmetricsarepresentedinaformatthatiseasiertointerpretwhilemaintainingtheirrelativemagnitudesandrelationships(Smith,2002).14 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 19 Context: ●MaxPoolingLayer:Reducesthedimensionalityofthedata.●BidirectionalLSTMLayer:Processesthesequencedatainbothforwardandbackwarddirectionswith64LSTMunits.●TransformerBlocks:Enhancesthemodel'sabilitytohandlelong-rangedependenciesusingself-attentionmechanisms.●GlobalAveragePoolingLayer:Summarizesthesequenceintoafixed-lengthvector.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:ThishybridmodelextendstheCNN-LSTMarchitecturebyincorporatingTransformerblocks.TheTransformerblocksaredesignedtohandlelong-rangedependenciesthroughself-attentionmechanisms.AftertheCNNlayersextractspatialfeatures,theBidirectionalLSTM(Bi-LSTM)layersprocessthedatainbothforwardandbackwarddirections,capturingcomprehensivetemporaldependencies.3.7EvaluationandPerformanceMetricsEachtraditionalandhybridmodelistrainedandevaluatedusingthesamepreprocessedandwindoweddataset.ThetrainingprocessincludesearlystoppingtopreventoverfittingandCSVloggingtomonitortrainingprog #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 20 Context: 3.8 Architecture Figure 2. Traffic Prediction Model Workflow The traffic prediction model workflow, as illustrated in Figure 2, begins with the data loading phase, where traffic data from various stations is retrieved from the database. This data includes metrics such as lane flow, average occupancy, and average speed, collected over a specified time period. Following data loading, the data processing step involves handling missing values by filling them with zeroes, normalizing the data to ensure consistency, and extracting the relevant features needed for model training. Once the data is processed, the window generator creates smaller segments or windows of data, each containing a sequence of data points over a specific time frame. These windows serve as the input for training the machine learning models. The next phase involves defining and training various model architectures, each capturing different aspects of the data. These models include the Dense Model, CNN Model, LSTM Model, Bi-LSTM Model, CNN-LSTM Model, TCN Model, Transformer Model, and the CNN-LSTM-Transformer Model. Each model architecture undergoes a training loop where it is trained using the windowed dataset. Early stopping and CSV logging are implemented to monitor the training progress and prevent overfitting. After training, the models are evaluated using performance metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) to assess their accuracy and robustness. Finally, the trained models are saved for future use. This structured workflow ensures a comprehensive approach to developing and evaluating various models for traffic prediction, allowing for the identification of the best-performing model for accurate long-term traffic forecasting. 15 LEICHEN DEEN pee indow Generator or A Nc eu Dense Model CNN Model LSTM Model Bi-LSTM Model [NE TUT Bre Er Transformer Model (CNN-LSTM-Transformer Model SET Fa Model Evaluation Cera #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 21 Context: | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0417 | 0.0423 | 0.0469 | 0.0466 | 0.055 | 0.222 | 103.6178 | 0.3429 | | MAE | 0.206 | 0.2051 | 0.2122 | 0.2112 | 0.0435 | 0.2046 | 96.6873 | 0.3003 | | MAPE | 94.4234 | 95.9163 | 95.2754 | 100.9174 | 0.0649 | 0.2485 | 135.9898 | 0.37 | | RMSE | 0.293 | 0.2953 | 0.3121 | 0.3106 | 0.0431 | 0.2042 | 106.863 | 0.2983 | 16 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 21 Context: CHAPTER 4 RESULTS The performance of each model was evaluated using three primary metrics: Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). These metrics were chosen to provide a comprehensive assessment of the models' accuracy in predicting traffic patterns. Table 1. Lane 1 Results of Short - Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.059 | 0.0577 | 0.063 | 0.0695 | 0.0831 | 0.284 | 121.1983 | 0.4134 | | MAE | 0.2368 | 0.2354 | 0.2493 | 0.2654 | 0.0636 | 0.2505 | 94.6997 | 0.3612 | | MAPE | 98.1179 | 98.6875 | 105.7835 | 119.5923 | 0.0791 | 0.2838 | 122.2462 | 0.4029 | | RMSE | 0.3466 | 0.3434 | 0.3585 | 0.3761 | 0.0664 | 0.2574 | 93.708 | 0.3687 | Table 2. Lane 2 Results of Short - Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0309 | 0.0331 | 0.0364 | 0.0401 | 0.0481 | 0.1908 | 195.409 | 0.3273 | | MAE | 0.1628 | 0.1627 | 0.1722 | 0.1817 | 0.0319 | 0.1674 | 168.9306 | 0.2568 | | MAPE | 155.4288 | 162.2879 | 157.4485 | 188.0767 | 0.0499 | 0.2011 | 200.1992 | 0.3263 | | RMSE | 0.2524 | 0.2624 | 0.2761 | 0.2901 | 0.0362 | 0.1683 | 165.3492 | 0.2773 | Table 3. Lane 4 Results of Short - Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0439 | 0.0416 | 0.0422 | 0.0412 | 0.0494 | 0.2158 | 86.9541 | 0.3216 | | MAE | 0.2163 | 0.2071 | 0.2068 | 0.2025 | 0.0432 | 0.21 | 94.6335 | 0.2964 | | MAPE | 88.3815 | 89.3984 | 97.0663 | 91.2169 | 0.0559 | 0.239 | 105.4641 | 0.3386 | | RMSE | 0.2989 | 0.2906 | 0.2926 | 0.289 | 0.0411 | 0.2048 | 87.323 | 0.2887 | Table 4. Lane 4 Results of Short - Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-L
STM | TCN | TRANSFO
RMER | HYBRID | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 22 Context: | MAE | 0.0705 | 0.261 | 107.299 | 0.3802 | 0.3089 | 0.2776 | 0.3029 | 0.2685 | | MAPE | 0.0812 | 0.2881 | 122.214 | 0.4077 | 132.440 | 103.921 | 136.8484 | 103.77 | | RMSE | 0.085 | 0.297 | 128.627 | 0.4174 | 0.4379 | 0.4011 | 0.4254 | 0.3894 | 17 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 22 Context: Table 5. Lane 5 Results of Short - Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.035 | 0.0351 | 0.0378 | 0.0365 | 0.0467 | 0.2009 | 85.2211 | 0.3156 | | MAE | 0.1815 | 0.1806 | 0.1849 | 0.1782 | 0.0393 | 0.1925 | 93.5314 | 0.2873 | | MAPE | 83.1773 | 84.5585 | 85.7928 | 84.4121 | 0.0498 | 0.2102 | 112.2476 | 0.3263 | | RMSE | 0.2701 | 0.2709 | 0.2817 | 0.277 | 0.0374 | 0.1846 | 87.9247 | 0.2803 | Table 6. Lane 6 Results of Short - Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0355 | 0.0339 | 0.0359 | 0.0351 | 0.0426 | 0.1943 | 72.0088 | 0.2982 | | MAE | 0.1827 | 0.1775 | 0.1786 | 0.177 | 0.0362 | 0.1862 | 73.7934 | 0.2726 | | MAPE | 72.1391 | 69.5507 | 70.5062 | 68.9648 | 0.0502 | 0.2092 | 77.1041 | 0.3245 | | RMSE | 0.2698 | 0.2636 | 0.272 | 0.2681 | 0.0362 | 0.184 | 66.8132 | 0.2717 | Table 7. Lane 7 Results of Short - Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0516 | 0.0512 | 0.0544 | 0.0537 | 0.0603 | 0.2313 | 213.5089 | 0.3567 | | MAE | 0.2201 | 0.2175 | 0.2182 | 0.2176 | 0.0567 | 0.2306 | 191.9181 | 0.3432 | | MAPE | 203.122 | 193.494 | 204.040 | 193.256 | 0.0644 | 0.24 | 234.1192 | 0.3695 | | RMSE | 0.328 | 0.3272 | 0.3368 | 0.3352 | 0.0582 | 0.2329 | 225.794 | 0.3468 | Table 8. Lane 1 Results of Mid- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0727 | 0.2646 | 106.842 | 0.386 | 0.093 | 0.0772 | 0.0882 | 0.0735 | #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 23 Context: Table 9. Lane 2 Results of Mid- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0448 | 0.1928 | 189.382 | 0.31 | 0.0596 | 0.0446 | 0.057 | 0.0431 | | MAE | 0.0465 | 0.1919 | 189.218 | 0.319 | 0.2217 | 0.1893 | 0.2127 | 0.1807 | | MAPE | 0.0492 | 0.2001 | 202.798 | 0.322 | 225.597 | 205.555 | 207.6086 | 162.6 | | RMSE | 0.0531 | 0.2136 | 212.125 | 0.335 | 0.3619 | 0.3113 | 0.352 | 0.3074 | Table 10. Lane 3 Results of Mid- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0609 | 0.2508 | 96.2071 | 0.3548 | 0.0571 | 0.0505 | 0.0572 | 0.0482 | | MAE | 0.0575 | 0.2394 | 94.3022 | 0.3454 | 0.2318 | 0.2229 | 0.2367 | 0.2181 | | MAPE | 0.0519 | 0.2263 | 102.200 | 0.3273 | 94.2455 | 96.1922 | 95.3241 | 92.207 | | RMSE | 0.0529 | 0.2303 | 99.5245 | 0.3301 | 0.3471 | 0.3243 | 0.3426 | 0.3152 | Table 11. Lane 4 Results of Mid- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0558 | 0.234 | 103.638 | 0.344 | 0.0623 | 0.0568 | 0.0633 | 0.0527 | | MAE | 0.0558 | 0.231 | 106.871 | 0.3444 | 0.2356 | 0.2311 | 0.2424 | 0.2212 | | MAPE | 0.0592 | 0.2369 | 111.1363 | 0.3567 | 120.369 | 108.1711 | 121.8748 | 103.61 | | RMSE | 0.0614 | 0.2433 | 122.132 | 0.3626 | 0.3694 | 0.3482 | 0.366 | 0.3354 | Table 12. Lane 5 Results of Mid- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0466 | 0.2062 | 97.0455 | 0.3161 | 0.0501 | 0.0481 | 0.0532 | 0.0438 | | MAE | 0.0464 | 0.203 | 92.1541 | 0.3164 | 0.208 | 0.2071 | 0.219 | 0.195 | #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 23 Context: | MAPE | 0.0481 | 0.2041 | 91.0538 | 0.3228 | 87.5111 | 100.938 | 119.6853 | 92.240 | | RMSE | 0.0479 | 0.2039 | 93.793 | 0.3219 | 0.3295 | 0.3229 | 0.3369 | 0.3084 | 18 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 24 Context: | MAPE | 113.0106 | 113.8206 | 112.6898 | 117.0394 | 112.5488 | 103.933 | 132.9332 | 101.22 | | RMSE | 0.4187 | 0.4031 | 0.3678 | 0.3828 | 0.3798 | 0.3572 | 0.3824 | 0.3516 | 19 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 24 Context: Table 13. Lane 6 Results of Mid- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0489 | 0.2121 | 87.6774 | 0.3204 | 0.0525 | 0.0471 | 0.0518 | 0.0431 | | MAE | 0.0474 | 0.206 | 85.8866 | 0.3166 | 0.2171 | 0.2074 | 0.214 | 0.1934 | | MAPE | 0.047 | 0.2005 | 79.6221 | 0.3163 | 82.3698 | 78.4122 | 83.0729 | 72.358 | | RMSE | 0.0479 | 0.2024 | 84.9838 | 0.3188 | 0.3323 | 0.3147 | 0.3299 | 0.3009 | Table 14. Lane 7 Results of Mid- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0626 | 0.2389 | 181.982 | 0.3632 | 0.0659 | 0.0638 | 0.064 | 0.064 | | MAE | 0.0608 | 0.2341 | 185.386 | 0.3586 | 0.2429 | 0.2409 | 0.24 | 0.2378 | | MAPE | 0.0617 | 0.2312 | 199.948 | 0.3613 | 206.317 | 189.361 | 215.4275 | 187.08 | | RMSE | 0.063 | 0.2336 | 194.7113 | 0.3664 | 0.3709 | 0.3674 | 0.3701 | 0.3673 | Table 15. Lane 1 Results of Long- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0659 | 0.0671 | 0.083 | 0.0809 | 0.0852 | 0.0593 | 0.0794 | 0.0579 | | MAE | 0.2366 | 0.2383 | 0.2693 | 0.263 | 0.2798 | 0.2193 | 0.2638 | 0.2118 | | MAPE | 241.132 | 226.7211 | 248.7511 | 233.479 | 300.554 | 230.765 | 277.89 | 187.03 | | RMSE | 0.3841 | 0.3899 | 0.4406 | 0.4304 | 0.4352 | 0.3692 | 0.4206 | 0.3648 | Table 16. Lane 2 Results of Long- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0829 | 0.0769 | 0.0656 | 0.0708 | 0.0686 | 0.0601 | 0.0706 | 0.0585 | | MAE | 0.295 | 0.281 | 0.2572 | 0.2652 | 0.258 | 0.2429 | 0.2695 | 0.2383 | #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 25 Context: Table 17. Lane 3 Results of Long- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0752 | 0.0731 | 0.0718 | 0.0753 | 0.0778 | 0.0668 | 0.0773 | 0.0661 | | MAE | 0.2755 | 0.2693 | 0.2615 | 0.2704 | 0.2663 | 0.251 | 0.275 | 0.2456 | | MAPE | 133.262 | 137.909 | 140.439 | 145.526 | 145.677 | 131.701 | 145.838 | 125.97 | | RMSE | 0.4055 | 0.3997 | 0.3941 | 0.4026 | 0.4154 | 0.3828 | 0.4072 | 0.3808 | Table 18. Lane 4 Results of Long- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0613 | 0.0591 | 0.0573 | 0.0586 | 0.0618 | 0.0573 | 0.0638 | 0.0552 | | MAE | 0.2404 | 0.2333 | 0.2237 | 0.2285 | 0.2323 | 0.2279 | 0.244 | 0.2187 | | MAPE | 113.0647 | 111.0473 | 105.158 | 110.8312 | 105.787 | 110.0082 | 122.2279 | 100.68 | | RMSE | 0.3655 | 0.3597 | 0.3523 | 0.3554 | 0.3674 | 0.3543 | 0.3719 | 0.3432 | Table 19. Lane 5 Results of Long- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0649 | 0.0622 | 0.0595 | 0.0601 | 0.0652 | 0.0553 | 0.0644 | 0.0557 | | MAE | 0.25 | 0.2414 | 0.2283 | 0.2315 | 0.2424 | 0.2236 | 0.2419 | 0.2237 | | MAPE | 105.532 | 104.665 | 98.7492 | 101.973 | 102.354 | 89.6261 | 93.0246 | 80.810 | | RMSE | 0.3722 | 0.3656 | 0.3552 | 0.3566 | 0.3717 | 0.3446 | 0.3699 | 0.3456 | Table 20. Lane 6 Results of Long- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.0649 | 0.0622 | 0.0595 | 0.0601 | 0.0652 | 0.0553 | 0.0644 | 0.0557 | | MAE | 0.25 | 0.2414 | 0.2283 | 0.2315 | 0.2424 | 0.2236 | 0.2419 | 0.2237 | #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 25 Context: | MAPE | 105.5326 | 104.6656 | 98.7492 | 101.9737 | 102.3549 | 89.6261 | 93.0246 | 80.8102 | | RMSE | 0.3722 | 0.3656 | 0.3552 | 0.3566 | 0.3717 | 0.3446 | 0.3699 | 0.3456 | 20 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 26 Context: Table 21. Lane 7 Results of Long- Term Prediction | Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D | | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | Loss | 0.074 | 0.0689 | 0.0656 | 0.0633 | 0.0686 | 0.0694 | 0.076 | 0.0713 | | MAE | 0.2603 | 0.2511 | 0.2445 | 0.2405 | 0.2515 | 0.2517 | 0.2659 | 0.2541 | | MAPE | 180.022 | 184.296 | 205.351 | 199.304 | 197.590 | 175.629 | 244.0392 | 213.02 | | RMSE | 0.3953 | 0.3817 | 0.3684 | 0.3633 | 0.3781 | 0.3813 | 0.402 | 0.3861 | Table 22. Performance of Best Results of Every Outsetps for Every Models Table 23. Best Performing Models for Short, Mid and Long Term Prediction 21 OUTSTEP 3 OUTSTEP 6 OUTSTEP 12 Model Loss MAE MAPE RMSE Model Loss MAE MAPE RMSE Model Loss MAE MAPE RMSE 0.0359 0.1786 70.5062 0.272 87.6774 85.8866 79.6221 84.9838 0.0573 0.2237 105.1583 0.3523 Bi-LSTM 0.0351 0.177 68.9648 0.2681 Bi-LSTM 0.31 0.319 0.322 0.335 Bi-LSTM 0.0586 0.2285 110.8312 0.3554 CNN-LSTM 0.0426 0.0362 0.0502 0.0362 CNN-LSTM 0.0501 0.208 87.5111 0.3295 CNN-LSTM 0.0618 0.2323 105.7875 0.3674 0.1908 0.1674 0.2011 0.1683 0.0446 0.1893 205.5559 0.3113 0.0553 0.2236 89.6261 0.3446 TRANSFORMER HYBRID 72.0088 0.2982 73.7934 0.2726 77.1041 0.3245 66.8132 0.2717 TRANSFORMER HYBRID 0.0518 0.0431 0.214 0.1934 83.0729 72.3582 0.3299 0.3009 TRANSFORMER HYBRID 0.0638 0.0552 0.244 0.2187 122.2279 100.6894 0.3719 0.3498 OUTSEP Model Min Loss MAE MAPE RSME 3 DENSE 0.0309 0.1628 155.4288 0.2524 6 HYBRID 0.0431 0.1934 72.3582 0.3009 12 HYBRID 0.0552 0.2187 100.6894 0.3432 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 27 Context: formswelloverall.Itcapturestemporaldependencieseffectively.BestLane:Lane6,withanMAEof0.1786andRMSEof0.272.Bi-LSTM:Performance:ShowshigherMAEandRMSEcomparedtosingleLSTM,indicatingitmightbeoverfittingonsomelanes.BestLane:Lane4,withanMAEof0.2025andRMSEof0.289.22 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 27 Context: CHAPTER5DISCUSSIONSInthischapter,wedelveintothedetailedanalysisoftheresultsobtainedfromourvariousmodelarchitecturesforlong-termtrafficforecasting.ThefocusisonevaluatingtheperformanceofeachmodelusingkeymetricssuchasLoss,MeanAbsoluteError(MAE),MeanAbsolutePercentageError(MAPE),andRootMeanSquaredError(RMSE).Byexaminingthesemetricsacrossdifferentforecastinghorizons(outsteps),weaimtoidentifythestrengthsandweaknessesofeachmodelandunderstandtheirsuitabilityfordifferenttimeframesoftrafficprediction.Short-TermPrediction(Tables1-7)DenseModel:Performance:ConsistentlygoodacrossalllaneswithlowMAEandRMSEvalues.Itperformsslightlybetterinlaneswithfewervehicles(e.g.,Lane1)comparedtomorecongestedlanes.BestLane:Lane5,withanMAEof0.1815andRMSEof0.2701.CNN:Performance:ComparabletotheDensemodelwithslightvariationsinMAEandRMSE.Itexcelsinlaneswithmoderatetrafficvolumes.BestLane:Lane5,withanMAEof0.1806andRMSEof0.2709.LSTM:Performance:SlightlyhighererrormetricsthanCNNandDensemodelsbutstillperformswelloverall.Itc #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 28 Context: f0.297.LSTM:Performance:Handlesmid-termpredictionsbetterthanshort-terminsomelanesbutoverallhighererrors.BestLane:Lane1,withanMAEof107.299andRMSEof128.627.23 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 28 Context: CNN-LSTM:Performance:Excellentinspecificlanes(e.g.,Lane1)butoverallhigherMAEandRMSEinotherlanes.BestLane:Lane6,withanMAEof0.0362andRMSEof0.0362.TCN:Performance:Generallyhighererrorratesacrossalllanes,indicatingitmaynotbethebestfitforshort-termtrafficpredictions.BestLane:Lane6,withanMAEof0.1862andRMSEof0.184.Transformer:Performance:Higherrorsinsomelanes,showingmixedresults.Itmightneedfurthertuningforshort-termpredictions.BestLane:Lane6,withanMAEof73.7934andRMSEof66.8132.HybridCNN-LSTM-Transformer:Performance:Mixedresultswithhighererrormetricsinsomelanes.Thecomplexityofthehybridmodelmightneedmoredataortuning.BestLane:Lane6,withanMAEof0.2726andRMSEof0.2717.Mid-TermPrediction(Tables8-14)DenseModel:Performance:Maintainslowerrormetricsbutslightlyhigherthaninshort-termpredictions.BestLane:Lane2,withanMAEof0.0465andRMSEof0.0531.CNN:Performance:IncreasedMAEandRMSEcomparedtoshort-termpredictions,indicatingchallengesinmid-termforecasting.BestLane:Lane1,withanMAEof0.261andRMSEof0.297.LSTM:Performa #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 29 Context: Bi-LSTM:Performance:Highererrorsinmid-termpredictions,similartoitsperformanceinshort-termpredictions.BestLane:Lane3,withanMAEof0.3454andRMSEof0.3301.CNN-LSTM:Performance:Stillperformswellinsomelanesbutshowsvariabilityinerrormetrics.BestLane:Lane3,withanMAEof0.2318andRMSEof0.3471.TCN:Performance:Consistentperformancewithmid-rangeerrors.BestLane:Lane2,withanMAEof0.1893andRMSEof0.3113.Transformer:Performance:Betterperformanceinmid-termpredictionscomparedtoshort-term,indicatingitsstrengthincapturinglongertemporaldependencies.BestLane:Lane3,withanMAEof0.2229andRMSEof0.3243.HybridCNN-LSTM-Transformer:Performance:Higherrorsinsomelanes,indicatingtheneedforfurtheroptimization.BestLane:Lane2,withanMAEof0.1807andRMSEof0.3074.Long-TermPrediction(Tables15-21)DenseModel:Performance:Maintainsareasonableperformancebutwithhighererrormetricscomparedtoshortandmid-termpredictions.BestLane:Lane4,withanMAEof0.2404andRMSEof0.3655.24 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 30 Context: CNN:Performance:Increasederrorsinlong-termpredictions,showinglimitationsinhandlingextendedforecastinghorizons.BestLane:Lane2,withanMAEof0.281andRMSEof0.4031.LSTM:Performance:SimilartoCNN,highererrorsinlong-termpredictions.BestLane:Lane2,withanMAEof0.2572andRMSEof0.3678.Bi-LSTM:Performance:PerformsslightlybetterthanLSTMbutstillwithhigherrors.BestLane:Lane2,withanMAEof0.2652andRMSEof0.3828.CNN-LSTM:Performance:SimilarperformancetoBi-LSTM,indicatingthehybridapproachmayneedoptimizationforlong-termpredictions.BestLane:Lane4,withanMAEof0.2323andRMSEof0.3674.TCN:Performance:Consistentlyhigherrors,indicatinglimitationsinhandlinglong-termpredictions.BestLane:Lane6,withanMAEof0.2236andRMSEof0.3446.Transformer:Performance:BetterthanTCNandCNN,indicatingitssuitabilityforlong-termpredictions.BestLane:Lane4,withanMAEof0.2237andRMSEof0.3523.HybridCNN-LSTM-Transformer:25 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 31 Context: Performance:Mixedresultswithhighererrorsinsomelanes,indicatingtheneedforfurtherrefinement.BestLane:Lane4,withanMAEof0.2187andRMSEof0.3432.Short-TermForecasting(OUTSTEPS3)Fortheshort-termforecastinghorizon(outstep3),theDensemodelachievedthelowestlossof0.0309onlane2.ThisindicatesthattheDensemodel,despiteitssimplicity,ishighlyeffectiveforshort-termtrafficpredictiontasks.Thelowlossvaluesuggeststhatthemodelcancaptureimmediatetrendsandpatternsintrafficdataaccurately.ThisfindingisconsistentwithstudiessuchasZhangetal.(2019),whereaCNNmodelincorporatingspatio-temporalfeaturesdemonstratedsuperiorperformanceinshort-termpredictions.TheCNNmodelinourstudyshowedcomparableperformancewithslightlyhigherlossanderrormetrics,whichalignswithZhangetal.'sfindingsontheeffectivenessofCNNsfortrafficforecasting.TheCNN-LSTMhybridmodel,despitehavingaslightlyhigherloss,demonstratedsignificantlylowerMAE,MAPE,andRMSEvalues.ThissupportsthefindingsofCao,Li,andChan(2020),whoshowedthatcombiningCNNsandLSTMsenhancesthemodel' #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 31 Context: TMsenhancesthemodel'sabilitytocapturebothspatialandtemporalfeatures,leadingtomoreaccurateshort-termtrafficpredictions.TheTransformermodel,however,performedpoorlywithveryhigherrorvalues,suggestingthatitstruggledwithshort-termpredictions,similartoobservationsintheliteratureregardingtheneedforlargedatasetsandfine-tuningforTransformermodels(Vaswanietal.,2017).Medium-TermForecasting(OUTSTEPS6)Inthemedium-termforecastinghorizon(outstep6),theHybridmodelintegratingCNN,LSTM,andTransformercomponentsachievedthelowestlossof0.0431onlane4.Thisresulthighlightsthestrengthofcombiningmultipleneuralnetworkarchitecturestocapture26 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 32 Context: fficdata.Themodel'sabilitytomaintainlowlossandrelativelylowerrormetricsoveranextendedperiodsuggestsitsrobustnessincapturinglong-rangepatternsandtrends.ThisfindingissupportedbyEmamietal.(2019)andSongetal.(2021),whoemphasizedtheimportanceofhybridmodelsinlong-termtrafficforecasting.TheTCNmodelalsoperformedwell,withalossof0.0553andthelowestMAPE,indicatingitseffectivenessinlong-termforecasting.ThisalignswiththestudybyBaietal.(2018),whichhighlightedthestrengthsofTCNsincapturinglong-rangedependenciesintime-seriesdata.TheTransformermodelcontinuedtostrugglewithhighererrormetrics,highlightingitslimitationsinthiscontext,asnotedbyVaswanietal.(2017)intheirworkonTransformermodelsrequiringextensivetuninganddataforoptimalperformance.27 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 32 Context: bothspatialandtemporalfeaturesoveramedium-termperiod.TheHybridmodel'sperformanceisconsistentwiththefindingsofHuangetal.(2023),whoemphasizedtheeffectivenessofhybridmodelsincapturingcomplextrafficdynamics.TheDensemodelalsoshowedstrongperformancewithslightlyhigherloss,butlowerMAEandRMSE,indicatingitsrobustnessformedium-termforecasting.ThisalignswiththeobservationsbyWangetal.(2021)regardingtheeffectivenessofLSTMmodelsinmedium-termtrafficprediction,particularlywhencombinedwithotherarchitecturesinahybridmodel.TheLSTMmodel,however,performedpoorlywithhigherrorvaluesacrossallmetrics,whichmaybeduetoitslimitationsinhandlingmedium-termvariabilitywithoutadditionalfeatureintegration(Wang,Su,&Ding,2021).Long-TermForecasting(OUTSTEPS12)Forthelong-termforecastinghorizon(outstep12),theHybridmodelonceagaindemonstratedsuperiorperformancewiththelowestlossof0.0552onlane5.ThisfurtherreinforcestheeffectivenessoftheHybridmodelinhandlinglong-termdependenciesandcomplexinteractionswithinthetrafficdata.Themodel'sa #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 33 Context: CHAPTER6CONCLUSIONTheanalysisofthebestperformingmodelsbasedonminimumlossforeachoutstepprovidesvaluableinsightsintothesuitabilityofdifferentmodelarchitecturesforvaryingforecastinghorizons:Short-TermForecasting(Outstep3):TheDensemodelishighlyeffective,achievingthelowestloss.Itssimplicityandabilitytoquicklyadapttoshort-termtrendsmakeitareliablechoiceforimmediatetrafficpredictiontasks.Medium-TermForecasting(Outstep6):TheHybridmodelexcels,leveragingthecombinedstrengthsofCNNs,LSTMs,andTransformers.Thisintegrationallowsthemodeltohandlethemedium-termvariabilityintrafficdataeffectively.Long-TermForecasting(Outstep12):TheHybridmodelalsoprovestobethebestchoiceforlong-termforecasting,demonstratingrobustnessincapturinglong-rangedependenciesandmaintaininglowlossoverextendedperiods.Ourfindingsareconsistentwithpreviousresearch,indicatingthatCNN-LSTMmodelsaregenerallyrobustforshort-termpredictionswhileTransformermodelsexcelinlong-termforecasting(Zhangetal.,2019;Huangetal.,2023).Thesefindingsunderscoret #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 33 Context: efindingsunderscoretheimportanceofselectingappropriatemodelsbasedonthespecificforecastinghorizon.Hybridmodelsshowsignificantpromise,particularlyformediumandlong-termforecasts,whiletheDensemodeliswell-suitedforshort-termpredictions.Theseinsightsprovideafoundationforfutureresearchandpracticalapplicationsintrafficmanagementandplanning,highlightingtheneedforadaptableandrobustforecastingmodelstailoredtodifferenttimeframes.28 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 34 Context: ther,events,andsocialactivities.Futurestudiesshouldintegrateadditionaldatasourceslikeweatherdataandeventschedulestoenhancethepredictivepoweroftrafficmodelsandbettercapturethedynamicnatureoftrafficflow.EnhancingModelComplexityandDepthFurtherexperimentationwithmorecomplexarchitectures,suchasattentionmechanisms,reinforcementlearning,andensemblelearningtechniques,couldimprovethe29 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 34 Context: CHAPTER7RECOMMENDATIONSFORFUTUREWORKTheresultsandanalysisofthisstudyprovideasolidfoundationforfurtheradvancementsintrafficcongestionforecasting.However,severalareasforimprovementandfurtherresearchhavebeenidentifiedtoenhancetheaccuracyandapplicabilityoftrafficpredictionmodels.UtilizingMorePowerfulComputationalToolsGoogleColab,whileaccessible,haslimitationsinprocessingpowerandmemory.Futureresearchshouldutilizehigh-performancecomputingclustersorcloud-basedplatformslikeAWSandGCP,whichofferscalableresourcestohandlelargerdatasetsandmorecomplexmodels,therebyimprovingefficiencyandaccuracy.ExpandingtheVarietyofDatasetsTogeneralizefindingsandimprovemodelrobustness,futurestudiesshouldincorporateavarietyofdatasetsfromdifferentlocationsandcontexts.Includingdatasetsfromdifferentcitiesandcountriescanhelpdevelopmodelsthataremoreadaptabletodiversetrafficconditionsandidentifyregion-specificfactors.IntegratingAdditionalDataSourcesTrafficcongestionisinfluencedbynumerousfactorssuchasweather,events,andsocia #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 35 Context: isciplinaryCollaborationCollaborationbetweencomputerscientists,urbanplanners,transportationengineers,andpolicymakerscanensurethatmodelsaretechnicallysoundandpracticallyrelevant.Interdisciplinarycollaborationcanalignmodelswiththeneedsofurbanplanningandtrafficmanagement.Byaddressingtheserecommendations,futureresearchcanbuildonthefindingsofthisstudytodevelopmoreaccurate,reliable,andversatiletrafficforecastingmodels.Theseimprovementswillcontributesignificantlytothefieldofintelligenttransportationsystems,ultimatelyaidinginthemanagementandmitigationoftrafficcongestioninurbanareas.30 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 35 Context: performanceoftrafficpredictionmodels.Theseapproacheshaveshownpromiseinotherdomainsandcouldenhancetheabilitytocaptureintricatetrafficpatterns.ImprovingDataPreprocessingTechniquesFutureworkshouldfocusonimprovingdatapreprocessingtechniques,includingadvancedmethodsforhandlingmissingdata,detectingandcorrectingoutliers,andnormalizingtrafficdata.Enhancedpreprocessingcanprovidehigher-qualityinputsformodels,leadingtobetterperformance.ConductingLong-TermEvaluationsLong-termevaluationsoverseveralmonthsoryearswouldprovideabetterunderstandingofmodels'stabilityandrobustnessovertime.Thisiscrucialforlong-termtrafficmanagementandurbanplanning,whereconsistentperformanceisessential.ExploringTransferLearningTransferlearning,whichinvolvesleveragingpre-trainedmodelsonnewtasks,couldbebeneficialfortrafficforecasting.Futureresearchcouldexploretransferlearningtoadaptmodelstrainedononedatasettoanother,potentiallyreducingtheneedforextensivetrainingdataandcomputationalresources.EngaginginInterdisciplinaryCollabora #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 36 Context: REFERENCESBernaś,M.,Płaczek,B.,Porwik,P.,&Pamuła,T.(2015).Segmentationofvehicledetectordataforimprovedk-nearestneighbours-basedtrafficflowprediction.IETIntelligentTransportSystems,9(3),264-274.Chen,C.,Liu,Z.,Wan,S.,Luan,J.,&Pei,Q.(2020).Trafficflowpredictionbasedondeeplearningininternetofvehicles.IEEETransactionsonIntelligentTransportationSystems,22(6),3776-3789.Emami,A.,Sarvi,M.,&AsadiBagloee,S.(2019).UsingKalmanfilteralgorithmforshort-termtrafficflowpredictioninaconnectedvehicleenvironment.JournalofModernTransportation,27,222-232.Goudarzi,S.,Kama,M.N.,Anisi,M.H.,Soleymani,S.A.,&Doctor,F.(2018).Self-organizingtrafficflowpredictionwithanoptimizeddeepbeliefnetworkforinternetofvehicles.Sensors,18(10),3459.Kong,F.,Li,J.,Jiang,B.,&Song,H.(2019).Short-termtrafficflowpredictioninsmartmultimediasystemforInternetofVehiclesbasedondeepbeliefnetwork.FutureGenerationComputerSystems,93,460-472.Olayode,I.O.,Tartibu,L.K.,Okwu,M.O.,&Severino,A.(2021).ComparativetrafficflowpredictionofaheuristicANNmode #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 36 Context: nofaheuristicANNmodelandahybridANN-PSOmodelinthetrafficflowmodellingofvehiclesatafour-waysignalizedroadintersection.Sustainability,13(19),10704.Graves,A.,&Schmidhuber,J.(2005).FramewisephonemeclassificationwithbidirectionalLSTMandotherneuralnetworkarchitectures.NeuralNetworks,18(5-6),602-610.Polson,N.G.,&Sokolov,V.O.(2017).Deeplearningforshort-termtrafficflowprediction.TransportationResearchPartC:EmergingTechnologies,79,1-17.Kong,Q.,Song,L.,&Wu,J.(2019).Urbantrafficcongestionpricingmodelwithconsiderationofcarbonemissionscost.Sustainability,11(4),1102Wang,X.,Zeng,R.,Zou,F.,Liao,L.,&Huang,F.(2022).STTF:AnEfficientTransformerModelforTrafficCongestionPrediction.NanyangTechnologicalUniversity,Singapore.Huang,X.,Jiang,Y.,Wang,J.,Lan,Y.,&Chen,H.(2023).Amulti-modalattentionneuralnetworkfortrafficflowpredictionbycapturinglong-shorttermsequencecorrelation.31 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 37 Context: dtrafficforecasting.TransportationResearchPartC:EmergingTechnologies.32 #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 37 Context: Hinton,G.E.,Osindero,S.,&Teh,Y.W.(2006).Afastlearningalgorithmfordeepbeliefnets.NeuralComputation,18(7),1527-1554.Goodfellow,I.,Bengio,Y.,&Courville,A.(2016).DeepLearning.MITPress.Bernaś,M.,Kamiński,B.,&Korczak,J.(2015).Trafficforecastingwithmachinelearningmodels.InternationalConferenceonDependableSystemsandNetworks.Wang,Y.,Li,Z.,Zhang,H.,Li,H.,&Wu,J.(2020).Areviewoftrafficcongestionpredictionusingartificialintelligence.IEEETransactionsonIntelligentTransportationSystems.Sun,Y.,Wang,Y.,&Li,Z.(2021).Real-timetrafficpredictionwithbigdata:Areviewofmethodsandapplications.IEEETransactionsonIntelligentTransportationSystems.Emami,P.,Yang,L.,&Jin,L.(2019).Long-termtrafficflowpredictionusingdeeplearningbasedspatio-temporalmodeling.IEEETransactionsonIntelligentTransportationSystems.Chen,X.,etal.(2020).Exploringurbanmobilitywithbigdata:Modelingandapplications.JournalofUrbanPlanningandDevelopment.Huang,H.,etal.(2023).Integratingmachinelearningandspatio-temporalanalysisforenhancedtrafficforecasting. #################### File: Special%20Problem%20Manuscript%20-%20Layahin.pdf Page: 38 Context: APPENDIX Gantt Chart 33 Integrating Spatio-Temporal Data and Advanced Machine Learning for Long-Term Traffic Congestion Forecasting: A Hybrid Approach Using STTF and BILSTM Models sate tin [=] I it Hi finda i i ! i it i ########## """QUERY: discuss the paper""" Consider the chat history for relevant information. Use all information included. Use as much tokens as needed. Important: If you find information separated by a | in the context, it is a table formatted in Markdown. Final Files Sources: SP.txt - Page 1, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 1, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 2, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 3, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 4, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 5, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 6, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 7, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 8, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 9, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 10, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 11, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 12, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 13, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 14, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 15, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 16, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 17, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 18, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 19, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 20, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 21, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 22, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 23, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 24, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 25, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 26, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 27, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 28, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 29, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 30, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 31, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 32, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 33, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 34, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 35, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 36, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 37, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 38 ================================================== FINAL ANSWER Answer: Das vorgelegte Manuskript mit dem Titel „Enhancing Long-Term Traffic Congestion Forecasting: Evaluating Machine Learning and Deep Learning Models Using the PeMS Dataset“ stellt eine Bachelorarbeit im Studiengang Informatik an der University of the Philippines Cebu vor. Die Arbeit befasst sich mit der Verbesserung der Vorhersage von Verkehrsstaus mithilfe von Methoden des maschinellen Lernens und des Deep Learning. **Zentrale Ergebnisse der Arbeit:** * Die Arbeit vergleicht verschiedene Modelle des maschinellen Lernens und des Deep Learning, darunter Dense, CNN, LSTM, Bi-LSTM, TCN, Transformer und hybride Modelle, anhand des PeMS-Datensatzes. * Es zeigt sich, dass das Dense-Modell in der Kurzzeitprognose (Outstep 3) am besten abschneidet, während das Hybridmodell in der Mittelfristprognose (Outstep 6) und der Langfristprognose (Outstep 12) die beste Leistung erbringt. * Die Ergebnisse der Arbeit deuten darauf hin, dass hybride Modelle, die die Stärken verschiedener neuronaler Netzwerkarchitekturen kombinieren, besonders vielversprechend für die mittel- und langfristige Verkehrsprognose sind. **Stärken der Arbeit:** * **Praxisrelevanz:** Staus sind ein weitverbreitetes Problem, und die Fähigkeit, Staus vorherzusagen, ist für die Verkehrsplanung und -lenkung von entscheidender Bedeutung. * **Umfangreiche Modellevaluation:** Die Arbeit bewertet eine Vielzahl von Modellen des maschinellen Lernens und des Deep Learning und bietet so einen umfassenden Vergleich ihrer Leistung. * **Klare Darstellung der Ergebnisse:** Die Ergebnisse der Arbeit werden in Tabellenform übersichtlich dargestellt, was den Vergleich der verschiedenen Modelle erleichtert. **Schwächen der Arbeit:** * **Eingeschränkte Datenbasis:** Die Studie verwendet nur Daten aus dem PeMS-Datensatz, der auf Autobahnen in der Bay Area, Los Angeles, beschränkt ist. Die Ergebnisse sind möglicherweise nicht auf andere geografische Standorte oder Verkehrsszenarien übertragbar. * **Begrenzte Rechenleistung:** Die Studie wurde mit Google Colab durchgeführt, das in Bezug auf Rechenleistung und Speicherplatz begrenzt ist. Die Verwendung leistungsstärkerer Plattformen wie AWS oder GCP könnte zu genaueren Ergebnissen führen. * **Fehlende Diskussion der Limitationen:** Die Limitationen der verwendeten Modelle und des gewählten Ansatzes werden nicht ausreichend diskutiert. **Potenzial für zukünftige Forschung:** * **Integration weiterer Datensätze:** Die Verwendung von Datensätzen aus verschiedenen geografischen Standorten und Verkehrsszenarien würde die Robustheit und Verallgemeinerbarkeit der Modelle verbessern. * **Einbezug zusätzlicher Datenquellen:** Die Integration von Wetterdaten, Veranstaltungskalendern und anderen externen Faktoren könnte die Vorhersagegenauigkeit der Modelle weiter verbessern. * **Verbesserung der Datenvorverarbeitung:** Die Entwicklung fortschrittlicherer Techniken zur Verarbeitung fehlender Daten, zur Erkennung und Korrektur von Ausreißern und zur Normalisierung von Verkehrsdaten könnte zu genaueren Modellen führen. **Zusammenfassend lässt sich sagen:** Die vorliegende Arbeit liefert einen wertvollen Beitrag zur Forschung im Bereich der Verkehrsprognose. Die Ergebnisse der Arbeit unterstreichen das Potenzial von Hybridmodellen für die mittel- und langfristige Verkehrsprognose. Zukünftige Forschung sollte sich auf die Erweiterung der Datenbasis, die Einbeziehung zusätzlicher Datenquellen und die Verbesserung der Datenvorverarbeitung konzentrieren, um die Genauigkeit und Anwendbarkeit von Verkehrsprognosemodellen weiter zu verbessern. ==================================================