INITIALIZATION
Knowledgebase: ki-dev
Base Query: Highlight important things
Model: gemini-1.5-pro-preview-0409
Use Curl?:
==================================================
QUESTIONING
Clarity Score: 10
Give follow-up?: False
Follow-up query:
==================================================
ROUTING
Query type: summary
==================================================
RAG PARAMETERS
Max Context To Include: 100
Lowest Score to Consider: 0.1
==================================================
VECTOR SEARCH ALGORITHM TO USE
Use MMR search?: True
Use Similarity search?: False
==================================================
FILENAMES AND KEYWORDS
Keywords Found: ['things', 'important']
All file names: ['SP.txt', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'C.doc', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf', 'Special%20Problem%20Manuscript%20-%20Layahin.pdf']
File names to FILTER: []
==================================================
PRIMER
Primer:
You are a highly intelligent personal assistant. Your role is to act as an expert
at summarization and analysis.
In your responses to enterprise users, prioritize clarity, trustworthiness, and appropriate formality.
Be honest by admitting when a topic falls outside your scope of knowledge, and suggest
alternative avenues for obtaining information when necessary.
Make effective use of chat history to avoid redundancy and enhance response relevance, continuously
adapting to integrate all necessary details in your interactions.
Use as much tokens as possible to provide a detailed response.
==================================================
FINAL QUERY
Final Query: CONTEXT: ##########
File: SP.txt
Page: 1
Context: SP
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 1
Context: Enhancing Long-Term Traffic Congestion Forecasting: Evaluating Machine Learning and
Deep Learning Models Using the PeMS Dataset
An Undergraduate Special Problem
Presented to the
Faculty of the Department of Computer Science,
University of the Philippines Cebu
Cebu City
In Partial Fulfillment
of the Requirements for the Degree
Bachelor of Science in Computer Science
Jeff Erl layahin
BS Computer Science
Dhong Fhel K. Gom-os
Adviser
2024
LIST OF FIGURES
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 2
Context: FigureNo1.DatasetLocationofPeMS-bays62.TrafficPredictionModelWorkflow15
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 3
Context: TableNo1.Lane1ResultsofShort-TermPrediction162.Lane2ResultsofShort-TermPrediction163.Lane3ResultsofShort-TermPrediction164.Lane4ResultsofShort-TermPrediction165.Lane5ResultsofShort-TermPrediction176.Lane6ResultsofShort-TermPrediction177.Lane7ResultsofShort-TermPrediction178.Lane1ResultsofMid-TermPrediction179.Lane2ResultsofMid-TermPrediction1810.Lane3ResultsofMid-TermPrediction1811.Lane4ResultsofMid-TermPrediction1812.Lane5ResultsofMid-TermPrediction1813.Lane6ResultsofMid-TermPrediction1914.Lane7ResultsofMid-TermPrediction1915.Lane1ResultsofLong-TermPrediction1916.Lane2ResultsofLong-TermPrediction1917.Lane3ResultsofLong-TermPrediction2018.Lane4ResultsofLong-TermPrediction2019.Lane5ResultsofLong-TermPrediction2020.Lane6ResultsofLong-TermPrediction2021.Lane7ResultsofLong-TermPrediction2122.PerformanceofBestResultsofEveryOutsetpsforEveryModels2123.BestPerformingModelsforShort,MidandLongTermPrediction21
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 4
Context: TABLEOFCONTENTSPageTITLEiLISTOFFIGURESiiTABLEOFCONTENTSiiiCHAPTERINTRODUCTION11.1BackgroundoftheStudy11.2ResearchObjectives11.3ScopeandLimitation21.4SignificanceoftheResearch2CHAPTERREVIEWOFLITERATURE22.1TrafficCongestionForecasting32.2Long-TermTrafficCongestionForecasting42.3Long-termtrafficcongestionpredictionmodels5CHAPTERMETHODOLOGY33.1Introduction63.2DataCollectionandDataProcessing63.3FeatureExtractionwithBiLSTM73.4IncorporatingSTTFforSpatialAnalysis83.5HybridModelIntegration93.6BaselinModel103.7PerformanceEvaluation10CHAPTER6RESULTS16CHAPTER5DISCUSSIONS22CHAPTER6CONCLUSION28CHAPTER7RECOMMENDATIONSFORFUTUREWORK29REFERENCES31APPENDIX33
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 5
Context: ABSTRACTTrafficcongestionforecastingisvitalforurbanplanningandtrafficmanagement,providinginsightsforreducingcongestionandimprovingcommuterexperiences.Thisstudyevaluatesvariousmachinelearninganddeeplearningmodels,includingDense,CNN,LSTM,Bi-LSTM,TCN,Transformer,andhybridmodels,usingthePeMSdataset.OurfindingsindicatethattheDensemodelexcelsinshort-termforecasting(outstep3),whiletheHybridmodeldemonstratessuperiorperformanceinmedium-term(outstep6)andlong-term(outstep12)forecasting.However,thestudyfacedcomputationallimitationswithGoogleColab,suggestingfutureresearchshouldutilizemorepowerfulplatformslikeAWSorGCP.Additionally,integratingdiversedatasetsandexternaldatasourcessuchasweatherandeventscanfurtherenhancemodelaccuracy.Interdisciplinarycollaborationiscrucialtoensurethepracticalrelevanceandtechnicalrobustnessofdevelopedmodels.Keywords:TrafficCongestionForecasting,IntelligentTransportationSystems,MachineLearning,DeepLearning,PeMSDataset,Long-termForecasting,HybridModels,ComputationalTools.
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 6
Context: tesspatio-temporaldatatoprovideaccuratelong-termcongestionpredictions,therebysupportingmoreinformeddecision-makinginurbanplanningandtrafficmanagement.SpecificObjectives●Toanalyzeexistingtrafficcongestionforecastingmodelsandidentifytheirlimitationsinlong-termpredictionaccuracy.●DesignahybridmodelintegratingCNNs,LSTMs,andTransformercomponentstoimprovespatio-temporalfeatureextractionandsequenceanalysisforbetterlong-termtrafficforecasting.●TovalidatetheproposedmodelusingthePeMS-Baydataset,ensuringitsabilitytoaccuratelyforecasttrafficcongestion.1
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 6
Context: CHAPTER1INTRODUCTIONBackgroundoftheStudyInanerawhereurbanizationisrapidlyadvancing,trafficcongestionhasemergedasacriticalissueinurbanplanningandtrafficmanagement.Congestionnotonlycontributestoincreasedtraveltimesbutalsoaffectseconomicproductivityandenvironmentalsustainability.Recentstudieshaveutilizedspatio-temporalelementsintrafficforecastingmodelstopredictcongestionpatternswithavaryingdegreeofsuccess(Sunetal.,2021).Whileshort-termforecastinghasseenconsiderableimprovements(Bernaśetal.,2015;Wangetal.,2020),long-termforecastingremainsachallenge.Currentmodelstendtoloseaccuracyovertime,whichisproblematicaslong-termforecastsareessentialforplanningandmanagingtrafficwithaforward-lookingapproach(Emamietal.,2019;Songetal.,2021).Theneedtoaddressthesechallengesisunderscoredbythedynamicnatureofurbantraffic,whichrequiresrobustpredictionmodelsthatcanadapttochangeandmaintainaccuracy.ResearchObjectivesGeneralObjectiveTodevelopanadvancedtrafficforecastingmodelthateffectivelyintegratesspatio-temporalda
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 7
Context: entanovelapproachthatcanbeadaptedandscaledforvariousurbansettings.Thedevelopmentofarobustandaccuratelong-termforecastingmodelalignswiththebroadergoalsofsmartcityinitiatives,aimingtoenhancetheefficiencyandsustainabilityofurbantransportsystems.Theimplicationsofthisresearchextendbeyondthepracticalapplicationsintrafficmanagement,offeringinsightsintotheutilizationofhybriddeeplearningarchitecturesforcomplexspatio-temporaldataanalysis.2
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 7
Context: ●Toevaluatethemodel'sperformanceagainstestablishedmetricssuchasMAE,RMSE,andMAPE,andbenchmarkitagainstcurrentleadingmodelsinthefield.ScopeandLimitationThisresearchisfocusedonthedevelopmentofapredictivemodelforlong-termtrafficcongestionforecastingusingmachinelearninganddeeplearningtechniques.Thescopeincludesthedesign,implementation,andvalidationofthemodelusingtrafficdatafromthePeMS-Baydataset.Limitationsoftheresearchmayarisefromthecomplexityofintegratingmultipleadvancedlearningtechniquesandthecomputationaldemandsofprocessinglargedatasets.Furthermore,themodel'sperformancewillbeevaluatedinthecontextofthedataavailablefromtheBayArea,whichmaylimititsimmediateapplicabilitytoothergeographiclocationswithoutfurtheradaptation.SignificanceoftheResearchThesignificanceofthisresearchliesinitspotentialtocontributetothefieldofComputerSciencebypushingtheboundariesofpredictivemodelingintrafficmanagement.Byaddressingthecurrentgapinlong-termtrafficcongestionforecasting,thestudyaimstopresentanovelapproachtha
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 8
Context: CHAPTER2REVIEWOFLITERATURETrafficcongestionhasbeenasubjectofextensiveresearchwithinthefieldofintelligenttransportationsystems.Ascitiesexpandandthedemandforefficientmobilitygrows,theabilitytoaccuratelyforecasttrafficcongestionbecomesincreasinglysignificant.Thischapterpresentsasynthesisofthecurrentliteraturesurroundingtrafficcongestionforecasting.Itprovidesanoverviewofthemethodologiesandtechnologiesthathavebeendevelopedandhighlightsthechallengesthatpersist,particularlyinthedomainoflong-termprediction.Theliteraturereviewexaminestheevolutionoftrafficpredictionmodelsfromtraditionalstatisticalapproachestosophisticatedmachinelearninganddeeplearningmethods.Italsoexploreshowthesemodelshaveincorporatedcomplexspatio-temporaldataandroadnetworkinformationtoenhancepredictiveaccuracy.Thischapterlaysthegroundworkforunderstandingthecurrentstateoftrafficcongestionforecastingandsetsthestagefortheresearchproposedinthisstudy.TrafficcongestionforecastingTrafficcongestionforecastingisacrucialaspectofintellig
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 8
Context: ngmodelsofteninvolvereal-timedataanalysis,leveragingsensorsandcamerastogathercomprehensivetrafficdata.Thisdataisanalyzedusingsophisticatedalgorithmstopredicttrafficpatterns,identifypotentialbottlenecks,andsuggestoptimalcommuterroutes(Sunetal.,2021).Despitetheseadvancements,maintainingaccuracy,especiallyoverextendedperiods,remainsasignificantchallengeintrafficcongestionforecasting.Thecapabilitytopredicttrafficflowaccuratelyandinreal-timeisessentialforeffectiveurbantrafficmanagement,markingitasacriticalareaofongoingresearchanddevelopmentwithinintelligenttransportsystems.3
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 8
Context: cialaspectofintelligenttransportsystems,playingapivotalroleinthemanagementofurbantraffic.Itsimportancestemsfromitscapacitytopredictvehicularpatterns,aidinginefficienturbanplanning,congestionmitigation,andimprovingoverallcommutingexperiences(Bernaśetal.,2015).Accurateforecastsenablecityadministratorsandtransportauthoritiestomakeinformeddecisionsintrafficcontrol,infrastructuredevelopment,andpublictransportationscheduling.Thechallengeinforecastingtrafficcongestionisnotonlypredictingvehicleflowbutalsointegratingcomplexvariablessuchascommuterbehaviors,roadcapacities,andexternalfactorslikeweatherandspecialevents(Wangetal.,2020).Thiscomplexityhighlightsthesignificanceoftrafficcongestionforecastinginurbantrafficmanagement,aimingtofacilitatesmoothtrafficflowandminimizecongestionissues.Themethodologiesandapproachesintrafficcongestionforecastinghaveevolved,transitioningfromtraditionalmodelstoadvancedtechniquesutilizingbigdataandartificialintelligence(AI).Moderntrafficforecastingmodelsofteninvolve
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 9
Context: lsthateffectivelyintegrateandanalyzeavarietyofdatasources.Theseincludereal-timetrafficdata,urbandevelopmentplans,andinputsfromurbanplannersandpolicymakers.UtilizingAI,particularlyinareassuchasneuralnetworksandpredictiveanalytics,isseenaskeytoenhancingthelong-termforecastingaccuracy.Theultimateaimistocreaterobustmodelsthatnotonlypredicttrafficpatternswithhighprecisionbutalsoaidinmakinginformeddecisionsforsustainableurbangrowthandefficienttrafficmanagement.4
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 9
Context: icshifts,allofwhichcansignificantlyaltertrafficpatternsovertime(Chenetal.,2020;Wangetal.,2022).Totacklethesecomplexities,researchersareturningtoadvancedmodelingtechniquesthatincorporatemachinelearninganddeeplearning.Thesemodelsaimtolearnfromextensivedatasets,adapttochangingurbandynamics,andprovidemoreaccurateforecastsforlongerdurations(Huangetal.,2023;Emamietal.,2019).However,anotablegappersistsintheaccuracyoflong-termtrafficpredictions.Despitetheintegrationofsophisticatedspatio-temporalelements,thesemodelsoftenexperienceadeclineinpredictiveperformanceovertime.Thisdeclineismainlyduetotheinabilityofcurrentmodelstofullycapturetheevolvingcomplexitiesofurbantrafficsystemsandexternalinfluencessuchasurbandevelopmentandpolicychanges(Songetal.,2021;Emamietal.,2019).Therefore,enhancingtheadaptabilityandaccuracyofthesemodelsoverextendedperiodsremainsacriticalareaoffocusinurbantrafficmanagement.Lookingahead,thefutureoflong-termtrafficcongestionforecastinghingesondevelopingmodelsthateffectivelyint
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 9
Context: Long-TermTrafficCongestionForecastingLong-termtrafficcongestionforecastingisanareaofurbanplanningthatextendsbeyondtheimmediatehorizonofshort-termtrafficpredictions.Whileshort-termforecasting,whichusuallyspansafewminutestohours,iscrucialforday-to-daytrafficmanagement,itoftenfallsshortinaddressingthecomplexitiesofurbangrowthandinfrastructuralchangesthatimpacttrafficpatternsovermonthsoryears(Emamietal.,2019;Songetal.,2021).Theselimitationsunderscoretheneedforlong-termforecasting,whichaimstopredicttrafficconditionsoverextendedperiods,suchasdays,months,oryears.Thistypeofforecastingisessentialforstrategicurbanplanning,policy-making,andlong-terminfrastructuraldevelopments,asitconsidersbroaderfactorslikedemographicchanges,urbandevelopmenttrends,andemergingtransportationtechnologies(Sunetal.,2021;Kongetal.,2019).Thechallengeinlong-termforecastingliesinitsdynamicnature.Urbanenvironmentsareconstantlyevolvingduetofactorslikeurbanization,technologicaladvancements,andsocio-economicshifts,allofwhichc
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 10
Context: chinvolvesunderstandinghowtrafficconditionsatonelocationinfluence,andareinfluencedby,conditionsinotherareasovertime.AdvancedmodelslikeConvolutionalNeuralNetworks(CNN)andLongShort-TermMemory(LSTM)networkshavebeenadaptedtocapturethesespatio-temporalrelationships.Forexample,LSTMnetworks,knownfortheirtemporallearningcapabilities,havebeenusedalongsideCNNstolearnspatialfeatures,thusprovidingamorecomprehensiveanalysisoftrafficcongestionpatternsoverextendedperiods(Zhangetal.,2022)IntegrationofRoadNetworkInformation:Acriticalaspectinenhancinglong-termtrafficcongestionpredictionistheintegrationofroadnetworkstructureinformation.Recentmodelshaveattemptedtoincorporatethisdataintotheiranalysis.Forinstance,GraphConvolutionalNetworks(GCN)havebeenusedtomodeltheinterconnectivityofroadnetworks,allowingforamorenuancedunderstandingoftrafficflowandcongestiondynamics.Thisapproach,asseeninstudiesbyHuangetal.(2023),highlightstheimportanceofconsideringthephysicallayoutandconnectivityofroadsinlong-termcongestion
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 10
Context: Long-termtrafficcongestionpredictionmodelsDiverseForecastingMethodsinLong-TermPrediction:Thepursuitofeffectivelong-termtrafficcongestionpredictionmodelshasledtotheexplorationofvariousforecastingmethods.Beyondthestandardlinear,nonlinear,andneuralnetworkapproaches,thereisanincreasingfocusonintegratingdiversemethodologiestoaddressthecomplexnatureoflong-termtrafficdynamics.Forinstance,studieshaveexploredtheuseofAutoregressiveIntegratedMovingAverage(ARIMA)models,whicharetraditionallyusedfortime-seriesprediction,andcombinedthesewithEmpiricalModeDecomposition(EMD)toenhanceshort-termpredictioncapabilities.Thishybridapproach,asdemonstratedbyWangetal.(2022),signifiesthepotentialofcombiningtraditionalstatisticalmodelswithmoderntechniquestoimprovelong-termforecasting.Spatio-TemporalAnalysisinTrafficPrediction:Recognizingtheimportanceofspatialandtemporaldynamicsintrafficpatterns,recentstudieshaveemphasizedtheinclusionofspatio-temporalanalysisintrafficforecastingmodels.Thisapproachinvolvesunderstand
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 10
Context: nlong-termcongestionpredictionmodels.CNNModelfortrafficforecasting:Thepaper"Short-termtrafficflowpredictionbasedonspatio-temporalanalysisandCNNdeeplearning"byWeibinZhangetal.(2019)presentsamodelthatemploysconvolutionalneuralnetworks(CNN)toforecastshort-termtrafficflowbyassessingbothspatialandtemporalfeatures.Thespatio-temporalfeatureselectionalgorithm(STFSA),whichthispaperpresents,canhelptraditionalmodelsmakebetteruseofthesefeaturesby5
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 11
Context: er-DecoderArchitecture"highlighttheeffectivenessoftheproposedmodelinforecastinglong-termtrafficflows.UsingtheCaltransPerformanceMeasurementSystem(PeMS)dataset,themodeldemonstratedsuperioraccuracyandstabilitycomparedto6
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 11
Context: coder-DecoderArchitecture"byZhumeiWang,XingSu,andZhimingDingintroducesaninnovativemethodforpredictingtrafficpatternsoverlongperiods.Traditionalmodelsmainlyhandleshort-termpredictionsandoftenstrugglewithaccuracywhenextendedtolongertimeframes.Totacklethis,theauthorsdesignedadeeplearningmodelthatcombinesanLSTMencoder-decoderstructurewithahardattentionmechanismandacalibrationlayer.Thissetuphelpsthemodelrememberpasttrafficpatternsbetterandreduceserrorsthattypicallyaccumulateinlong-termforecasts(Wang,Su,&Ding,2021).Themodelwastestedusingreal-worldtrafficdatafromLosAngeles,showingitoutperformedotheradvancedpredictionmethods,provingmoreaccurateandstable.Byeffectivelycapturingbothlocaltrafficdetailsandlong-termtrends,thismodelofferssignificantimprovementsfortrafficmanagementandplanning.Theresearchersplantoenhancethemodelfurtherbyincludingspatial-temporalfeaturesandotherfactorsthatinfluencetraffic(Wangetal.,2021).Theresultsofthepaper"Long-TermTrafficPredictionBasedonLSTMEncoder-DecoderArchitectu
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 11
Context: identifyingtheidealinputdata.Afterthis,theCNNusesatwo-dimensionaltrafficdatamatrixtobuildapredictionmodel.Thesuggestedapproachsuccessfullycapturesandlearnsthepertinenttrafficfeatures,outperformingcurrentmodelsinaccuracy.Thestudyoffersimprovedtoolsfortrafficmanagementandplanningbydemonstratingnotableadvancementsintrafficflowprediction.Theresultsoftheresearchshowthatthesuggestedmodelperformsmuchbetterinshort-termtrafficflowpredictionthantraditionalmodels.Itdoesthisbycombiningspatio-temporaldatawithaconvolutionalneuralnetwork(CNN).IncomparisontobaselinemodelslikeSARIMA,SVR,KNN,andANN,theCNNmodeldemonstratedlowermeanabsolutepercentageerror(MAPE)andmeanabsoluteerror(MAE)whenaugmentedusingthespatio-temporalfeatureselectionalgorithm(STFSA).TheCNN+STFSAmodeldemonstrateditsefficacyinidentifyingintricatetrafficpatternsbyachievingthemaximumaccuracyacrossmultipleforecastperiods(5,10,15,and20minutes).LSTMModelfortrafficforecasting:Thepaper"Long-TermTrafficPredictionBasedonLSTMEncoder-DecoderArchite
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 12
Context: traditionalmethodslikeSupportVectorRegression(SVR)andLSTM,aswellasadvancedtechniquessuchastheEK-NNandSs2smodels.TheAttentionCalibrationEncoder-Decoder(ACE-D)modelachievedapproximately5%higheraccuracyinvarioustestingscenarios,predictingtrafficflowsforfuturehorizonsof50,80,100,150,and288timesteps.TheACE-Dmodelmaintainedlowererrorratesandprovedtobeparticularlyrobustinlong-termpredictions,showinglesserroraccumulationandgreaterstabilityovertime.Byeffectivelycapturingbothlocalfeaturesandlong-termdependenciesinthetrafficdata,theACE-Dmodeloffersamorereliablesolutionforlong-termtrafficprediction,enhancingtransportationplanningandmanagement(Wang,Su,&Ding,2021).CNN-LSTMModelfortrafficforecasting:Thepaper"ACNN-LSTMModelforTrafficSpeedPrediction"byMiaomiaoCao,VictorO.K.Li,andVincentW.S.ChanpresentsanovelmodelcombiningConvolutionalNeuralNetworks(CNN)andLongShort-TermMemory(LSTM)forpredictingtrafficspeeds.Thismodel,calledCLM,usesLSTMlayerstointegratespatiotemporalfeatureswithtrafficspeeddatathatisext
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 12
Context: icspeeddatathatisextractedfromCNNonadailyandweeklybasis.Whencomparedtofivebaselinetechniques—SVR,MLP,Lasso,RandomForest,andLSTM—themodeloutperformedtheminforecastingtrafficspeedsthroughoutarangeofforecastdurations.ThetestswereconductedusingactualtrafficdatafromHongKong.AccordingtoCao,Li,andChan(2020),theCLMmodeldemonstratedreducedmeanabsoluteerror(MAE),rootmeansquareerror(RMSE),aswellasincreasedcoefficientofdetermination(R²)andexplainedvariancescore(EVS).Thesefindingsvalidatethemodel'sefficacyincapturingintricatetrafficpatternsandyieldingpreciseforecastsfortrafficmanagementandplanning.7
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 13
Context: CHAPTER 3
METHODOLOGY
This chapter outlines the methodology employed in developing an advanced model
for long-term traffic congestion forecasting.
3.1 Introduction
The primary objective of this methodology is to develop and assess various advanced
neural network models, including Dense, CNN, LSTM, BiLSTM, CNN-LSTM, TCN, Transformer,
and a Hybrid CNN-LSTM-Transformer model, for improved long-term traffic congestion
forecasting. The methodology will be divided into several key stages: Data Collection and
Preprocessing, Model Training, Model Optimization, and Performance Evaluation.
3.2 Data Collection
The PeMS-Bay dataset, a public traffic dataset collected by the California
Transportation Agencies, serves as the primary data source for this study. The dataset
encompasses six months of traffic speed data, spanning from January to February 2023,
collected from 325 sensors strategically positioned on highways in the Bay Area, Los Angeles.
This dataset is illustrated in Figure 1, showcasing the extensive sensor coverage along major
highways and intersections, thereby offering a comprehensive view of traffic dynamics in the
region.
Figure 1. Dataset Location of PeMS-bay
8
ee
dee
5.9 ee
Er
L
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 14
Context: 3.3DataPreprocessingDatapreprocessingisacriticalstepinensuringthequalityandusabilityofthedatasetforsubsequentanalysisandmodeltraining.Initially,mapmatchingwillbeemployedtoalignthesensordatawithspecificroadsegments,ensuringthespatialaccuracyofthedataset.Followingthis,thedatasetwillundergonormalizationofspeeddata,adoptingthemethodologyoutlinedbyLietal.(2018).Thisnormalizationstepisessentialtostandardizethedataandfacilitatecomparisonacrossdifferentsensorsandtimeperiods.Giventhedataset'sgranularity,withdatacollectionintervalsofevery5,10,and15minutes,handlingmissingvaluesbecomesparamount.Forthisstudy,anymissingdatapointswillbefilledwithzeroes.Thisapproachensuresaconsistentandcompletedataset,crucialfortrainingmachinelearningmodelsthatrequireuninterruptedtimeseriesdata.Additionally,anypotentialoutliersoranomaliesinthedatawillbeidentifiedandaddressedtomaintaindataintegrity.3.3.1StationSelectionDuetolimitedcomputationalresources,thisstudyfocusesonasubsetofthedataset,specificallydatafrom10randomlyselectedstations.Thisselectionensuresmanageabilitywhilestillprovidingarepresentativesampleforanalysis.Thestationsareselectedrandomlytoavoidanyselectionbias,andthedatafromthesestationsisusedforallsubsequentsteps.3.3.2FeatureEngineeringFeatureengineeringinvolvesextractingrelevantfeaturesfromtherawdatatoenhancethepredictivepowerofthemachinelearningmodels.Inthisstudy,keyfeaturesincludelane-specifictrafficflow,averageoccupancy,andaveragespeed.Foreachlane,thesefeaturesareextractedandaggregatedtoformacomprehensivesetofpredictors.Thisprocessisautomatedusingcustomfunctionsthatiterateoverthelanestoextractandcompilethenecessaryfeatures,ensuringarobustandscalablefeatureextractionpipeline.3.3.3Normalization𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡=𝑑𝑎𝑡𝑎𝑠𝑒𝑡−µ ⁄σBeforefeedingthedataintomachinelearningmodels,itundergoesnormalizationtoensurethatallfeaturescontributeequallytothemodeltrainingprocess.Normalizationisperformedbysubtractingthemeananddividingbythestandarddeviationofeachfeature.Thistransformationensuresthatthedatahasameanofzeroandastandarddeviationofone,whichiscrucialfortheconvergenceofgradient-basedoptimizationalgorithmsusedintrainingdeeplearningmodels.9
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 15
Context: datathroughitsmultiplelayersofneurons.Thismodelis10
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 15
Context: 3.3.4DataSplitting𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎=𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡[0:𝑖𝑛𝑡(𝑛⋅0.7)]𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑎=𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑖𝑛𝑡(𝑛⋅0.7):𝑖𝑛𝑡(𝑛⋅0.9)]𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑑𝑎𝑡𝑎=𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡[𝑖𝑛𝑡(𝑛⋅0.9):𝑛]Thedatasetisdividedintotraining,validation,andtestingsetstoevaluatetheperformanceandgeneralizabilityofthemodels.Specifically,70%ofthedataisallocatedfortraining,20%forvalidation,andtheremaining10%fortesting.Thissplitensuresthatthemodelsaretrainedonasubstantialportionofthedatawhilebeingvalidatedandtestedonindependentsubsetstopreventoverfittingandtoassessperformanceobjectively.3.3.5WindowGenerationTocapturetemporaldependenciesinthetrafficdata,awindow-basedapproachisemployed.Thedataissegmentedintooverlappingwindowsoffixedsize,witheachwindowservingasasampleforthemodel.AcustomWindowGeneratorclassisdevelopedtofacilitate
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 15
Context: evelopedtofacilitatethisprocess.Theclasshandlesthecreationofinputandlabelwindows,ensuringthatthetemporalstructureofthedataispreserved.Thisapproachenablesthemodelstolearnpatternsovertime,whichisessentialforaccuratetrafficprediction.3.5TraditionalModelsThetraditionalmodelsencompassseveralstandardarchitectureswidelyusedintimeseriesforecastingandtrafficpredictiontasks.ThesemodelsincludeDense,CNN,LSTM,Bi-LSTM,TCN,andTransformer.Eachmodelhasuniquestrengthsinhandlingdifferentaspectsofthedata,andtheyareevaluatedusingthesamedatasetandperformancemetricstoensureafaircomparisonwiththehybridmodels.DenseModel(FullyConnectedNeuralNetwork):Architecture:●InputLayer:Acceptstheinputsequences.●LambdaLayer:Processesthelasttimestepoftheinputsequence.●DenseLayer:Fullyconnectedlayerwith512neuronsandReLUactivation.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:TheDenseModelcapturesbothlinearandnon-linearrelationshipsinthedatathroughitsmultip
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 16
Context: Mnetworksarepowerfulformodelingsequentialdatabecausetheycanmaintainandupdateinformationoverlongperiods.Thisabilitymakesthemparticularlyusefulfortimeseriesforecasting,wherepastdatapointscaninfluencefutureoutcomes.LSTMsareexcellentathandlingthetemporaldependenciesinherentintrafficdata.BidirectionalLongShort-TermMemory(Bi-LSTM)Network:Architecture:●InputLayer:Acceptstheinputsequences.●BidirectionalLSTMLayer:Processesthesequencedatainbothforwardandbackwarddirectionswith64LSTMunits.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.11
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 16
Context: straightforwardbutcanbehighlyeffectiveformanytypesofpredictivetasks,providingabaselineformorecomplexmodels.ConvolutionalNeuralNetwork(CNN):Architecture:●InputLayer:Acceptstheinputsequences.●LambdaLayer:Focusesonthelastfewtimestepsofthesequence.●ConvolutionalLayer:Appliesa1Dconvolutionalfilterwith256neuronsandReLUactivation.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:CNNsareparticularlyadeptatextractingspatialfeaturesfromthedata.Theyarewell-suitedforidentifyinglocalpatternsandtrends,whicharecrucialinunderstandingtrafficflowandcongestionpatterns.Byusingfiltersandpoolingoperations,CNNscanreducethecomplexityofthedatawhileretainingimportantfeatures.LongShort-TermMemory(LSTM)Network:Architecture:●InputLayer:Acceptstheinputsequences.●LSTMLayer:Processesthesequencedatawith64LSTMunits.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:LSTMnetworksarepowerful
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 17
Context: Description:Bi-LSTMsareparticularlyeffectiveforcapturingcontextfrombothpastandfuturedatapointssimultaneously.Thisdualprocessingcapabilityenhancesthemodel'sabilitytounderstandandpredictcomplextemporalpatterns,makingBi-LSTMswell-suitedfortaskswherefuturecontextisasimportantaspastcontextinmakingaccuratepredictions.TemporalConvolutionalNetwork(TCN):Architecture:●InputLayer:Acceptstheinputsequences.●TCNLayers:UtilizesTemporalConvolutionalNetworklayerswith64filtersandvariousdilationrates.●DenseLayer:Fullyconnectedlayerwith128neuronsandReLUactivation.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:TCNsprovideanalternativetorecurrentnetworkslikeLSTMsforsequencemodeling.Theyaredesignedtohandlelong-rangedependenciesandcanoftenachievebetterperformancewithfewerparameters.TCNsareparticularlyeffectiveatcapturingthetemporalpatternsintrafficdatawithouttheneedforrecurrentconnections.TransformerModel:Architecture:●InputLayer:Acceptsthe
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 17
Context: nputLayer:Acceptstheinputsequences.●TransformerEncoderLayers:Appliesmulti-headattentionmechanismsandfeedforwardneuralnetworkswithineachtransformerblock.●GlobalAveragePoolingLayer:Summarizesthesequenceintoafixed-lengthvector.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:Transformersarehighlyeffectiveforsequencemodelingtasksduetotheirabilitytocapturedependenciesoverlongdistanceswithoutthe12
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 18
Context: limitationsofrecurrentmodels.Theyuseself-attentionmechanismstodynamicallyfocusonrelevantpartsoftheinput,makingthemwell-suitedforcomplextimeseriesforecastingtasksliketrafficprediction.3.6HybridModelsInthestudyTwohybridmodels:aCNN-LSTMmodelandaCNN-LSTM-Transformermodelwereassessed.Thesemodelsintegratedifferentneuralnetworkarchitecturestoleveragetheiruniquestrengths,providingacomprehensiveapproachtotrafficforecastingbycapturingbothspatialandtemporalfeaturesfromthedata.CNN-LSTMHybridModel:Architecture:●InputLayer:Acceptstheinputsequences.●ConvolutionalLayer:Appliesa1Dconvolutionalfilterwith64neuronsandReLUactivation.●MaxPoolingLayer:Reducesthedimensionalityofthedata.●LSTMLayers:Processesthesequencedatawith128LSTMunitsintwolayers.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.●Description:ThishybridmodelcombinesConvolutionalNeuralNetworks(CNN)withLongShort-TermMemory(LSTM)networks.TheCNNlayersextractspatialfeaturesbyapplyingconvoluti
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 18
Context: sbyapplyingconvolutionalfilterstotheinputdata,identifyinglocalpatternssuchastrafficcongestionatspecificlocations.Followingthis,theLSTMlayerscapturetemporaldependenciesbyprocessingthesequencedata,makinguseoftheirmemorycellstoretaininformationoverlongperiods.Thiscombinationallowsthemodeltoleveragebothspatialcorrelationsandtemporalsequences,leadingtomoreaccuratetrafficpredictions.CNN-LSTM-TransformerHybridModelArchitecture:●InputLayer:Acceptstheinputsequences.●ConvolutionalLayer:Appliesa1Dconvolutionalfilterwith64neuronsandReLUactivation.13
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 19
Context: omonitortrainingprogress.ThemodelsarecompiledwiththeHuberlossfunctionandoptimizedusingtheStochasticGradientDescent(SGD)optimizerwithmomentum.Toassesstheperformanceofthemodels,wewillemploythreeestablishedevaluationmetricscommonlyusedintrafficforecastingresearch:MeanAbsoluteError(MAE),RootMeanSquaredError(RMSE),andMeanAbsolutePercentageError(MAPE).Thesemetricsarewidelyrecognizedinthefieldandprovidevaluableinsightsintotheaccuracyandreliabilityofpredictivemodels(Hyndman&Koehler,2006).Toenhancetheclarityandvisualcomparabilityoftheresults,wewillscaletheMAEandRMSEvaluesbyafactorof50.Thisscalingensuresthattheevaluationmetricsarepresentedinaformatthatiseasiertointerpretwhilemaintainingtheirrelativemagnitudesandrelationships(Smith,2002).14
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 19
Context: ●MaxPoolingLayer:Reducesthedimensionalityofthedata.●BidirectionalLSTMLayer:Processesthesequencedatainbothforwardandbackwarddirectionswith64LSTMunits.●TransformerBlocks:Enhancesthemodel'sabilitytohandlelong-rangedependenciesusingself-attentionmechanisms.●GlobalAveragePoolingLayer:Summarizesthesequenceintoafixed-lengthvector.●OutputLayer:Denselayerthatmapsthefeaturestotheoutputdimensions,followedbyareshapelayertoformattheoutput.Description:ThishybridmodelextendstheCNN-LSTMarchitecturebyincorporatingTransformerblocks.TheTransformerblocksaredesignedtohandlelong-rangedependenciesthroughself-attentionmechanisms.AftertheCNNlayersextractspatialfeatures,theBidirectionalLSTM(Bi-LSTM)layersprocessthedatainbothforwardandbackwarddirections,capturingcomprehensivetemporaldependencies.3.7EvaluationandPerformanceMetricsEachtraditionalandhybridmodelistrainedandevaluatedusingthesamepreprocessedandwindoweddataset.ThetrainingprocessincludesearlystoppingtopreventoverfittingandCSVloggingtomonitortrainingprog
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 20
Context: 3.8 Architecture
Figure 2. Traffic Prediction Model Workflow
The traffic prediction model workflow, as illustrated in Figure 2, begins with the data
loading phase, where traffic data from various stations is retrieved from the database. This
data includes metrics such as lane flow, average occupancy, and average speed, collected
over a specified time period. Following data loading, the data processing step involves
handling missing values by filling them with zeroes, normalizing the data to ensure
consistency, and extracting the relevant features needed for model training.
Once the data is processed, the window generator creates smaller segments or
windows of data, each containing a sequence of data points over a specific time frame.
These windows serve as the input for training the machine learning models. The next phase
involves defining and training various model architectures, each capturing different aspects
of the data. These models include the Dense Model, CNN Model, LSTM Model, Bi-LSTM
Model, CNN-LSTM Model, TCN Model, Transformer Model, and the CNN-LSTM-Transformer
Model.
Each model architecture undergoes a training loop where it is trained using the
windowed dataset. Early stopping and CSV logging are implemented to monitor the training
progress and prevent overfitting. After training, the models are evaluated using performance
metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE) to assess their accuracy and robustness.
Finally, the trained models are saved for future use. This structured workflow
ensures a comprehensive approach to developing and evaluating various models for traffic
prediction, allowing for the identification of the best-performing model for accurate
long-term traffic forecasting.
15
LEICHEN
DEEN pee
indow Generator
or A Nc eu
Dense Model
CNN Model
LSTM Model
Bi-LSTM Model
[NE TUT
Bre Er
Transformer Model
(CNN-LSTM-Transformer Model
SET Fa
Model Evaluation
Cera
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 21
Context: | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0417 | 0.0423 | 0.0469 | 0.0466 | 0.055 | 0.222 | 103.6178 | 0.3429 |
| MAE | 0.206 | 0.2051 | 0.2122 | 0.2112 | 0.0435 | 0.2046 | 96.6873 | 0.3003 |
| MAPE | 94.4234 | 95.9163 | 95.2754 | 100.9174 | 0.0649 | 0.2485 | 135.9898 | 0.37 |
| RMSE | 0.293 | 0.2953 | 0.3121 | 0.3106 | 0.0431 | 0.2042 | 106.863 | 0.2983 |
16
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 21
Context: CHAPTER 4
RESULTS
The performance of each model was evaluated using three primary metrics: Root
Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute
Error (MAE). These metrics were chosen to provide a comprehensive assessment of the
models' accuracy in predicting traffic patterns.
Table 1. Lane 1 Results of Short - Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.059 | 0.0577 | 0.063 | 0.0695 | 0.0831 | 0.284 | 121.1983 | 0.4134 |
| MAE | 0.2368 | 0.2354 | 0.2493 | 0.2654 | 0.0636 | 0.2505 | 94.6997 | 0.3612 |
| MAPE | 98.1179 | 98.6875 | 105.7835 | 119.5923 | 0.0791 | 0.2838 | 122.2462 | 0.4029 |
| RMSE | 0.3466 | 0.3434 | 0.3585 | 0.3761 | 0.0664 | 0.2574 | 93.708 | 0.3687 |
Table 2. Lane 2 Results of Short - Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0309 | 0.0331 | 0.0364 | 0.0401 | 0.0481 | 0.1908 | 195.409 | 0.3273 |
| MAE | 0.1628 | 0.1627 | 0.1722 | 0.1817 | 0.0319 | 0.1674 | 168.9306 | 0.2568 |
| MAPE | 155.4288 | 162.2879 | 157.4485 | 188.0767 | 0.0499 | 0.2011 | 200.1992 | 0.3263 |
| RMSE | 0.2524 | 0.2624 | 0.2761 | 0.2901 | 0.0362 | 0.1683 | 165.3492 | 0.2773 |
Table 3. Lane 4 Results of Short - Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0439 | 0.0416 | 0.0422 | 0.0412 | 0.0494 | 0.2158 | 86.9541 | 0.3216 |
| MAE | 0.2163 | 0.2071 | 0.2068 | 0.2025 | 0.0432 | 0.21 | 94.6335 | 0.2964 |
| MAPE | 88.3815 | 89.3984 | 97.0663 | 91.2169 | 0.0559 | 0.239 | 105.4641 | 0.3386 |
| RMSE | 0.2989 | 0.2906 | 0.2926 | 0.289 | 0.0411 | 0.2048 | 87.323 | 0.2887 |
Table 4. Lane 4 Results of Short - Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-L
STM | TCN | TRANSFO
RMER | HYBRID |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 22
Context: Table 5. Lane 5 Results of Short - Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.035 | 0.0351 | 0.0378 | 0.0365 | 0.0467 | 0.2009 | 85.2211 | 0.3156 |
| MAE | 0.1815 | 0.1806 | 0.1849 | 0.1782 | 0.0393 | 0.1925 | 93.5314 | 0.2873 |
| MAPE | 83.1773 | 84.5585 | 85.7928 | 84.4121 | 0.0498 | 0.2102 | 112.2476 | 0.3263 |
| RMSE | 0.2701 | 0.2709 | 0.2817 | 0.277 | 0.0374 | 0.1846 | 87.9247 | 0.2803 |
Table 6. Lane 6 Results of Short - Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0355 | 0.0339 | 0.0359 | 0.0351 | 0.0426 | 0.1943 | 72.0088 | 0.2982 |
| MAE | 0.1827 | 0.1775 | 0.1786 | 0.177 | 0.0362 | 0.1862 | 73.7934 | 0.2726 |
| MAPE | 72.1391 | 69.5507 | 70.5062 | 68.9648 | 0.0502 | 0.2092 | 77.1041 | 0.3245 |
| RMSE | 0.2698 | 0.2636 | 0.272 | 0.2681 | 0.0362 | 0.184 | 66.8132 | 0.2717 |
Table 7. Lane 7 Results of Short - Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0516 | 0.0512 | 0.0544 | 0.0537 | 0.0603 | 0.2313 | 213.5089 | 0.3567 |
| MAE | 0.2201 | 0.2175 | 0.2182 | 0.2176 | 0.0567 | 0.2306 | 191.9181 | 0.3432 |
| MAPE | 203.122 | 193.494 | 204.040 | 193.256 | 0.0644 | 0.24 | 234.1192 | 0.3695 |
| RMSE | 0.328 | 0.3272 | 0.3368 | 0.3352 | 0.0582 | 0.2329 | 225.794 | 0.3468 |
Table 8. Lane 1 Results of Mid- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0727 | 0.2646 | 106.842 | 0.386 | 0.093 | 0.0772 | 0.0882 | 0.0735 |
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 22
Context: | MAE | 0.0705 | 0.261 | 107.299 | 0.3802 | 0.3089 | 0.2776 | 0.3029 | 0.2685 |
| MAPE | 0.0812 | 0.2881 | 122.214 | 0.4077 | 132.440 | 103.921 | 136.8484 | 103.77 |
| RMSE | 0.085 | 0.297 | 128.627 | 0.4174 | 0.4379 | 0.4011 | 0.4254 | 0.3894 |
17
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 23
Context: | MAPE | 0.0481 | 0.2041 | 91.0538 | 0.3228 | 87.5111 | 100.938 | 119.6853 | 92.240 |
| RMSE | 0.0479 | 0.2039 | 93.793 | 0.3219 | 0.3295 | 0.3229 | 0.3369 | 0.3084 |
18
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 23
Context: Table 9. Lane 2 Results of Mid- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0448 | 0.1928 | 189.382 | 0.31 | 0.0596 | 0.0446 | 0.057 | 0.0431 |
| MAE | 0.0465 | 0.1919 | 189.218 | 0.319 | 0.2217 | 0.1893 | 0.2127 | 0.1807 |
| MAPE | 0.0492 | 0.2001 | 202.798 | 0.322 | 225.597 | 205.555 | 207.6086 | 162.6 |
| RMSE | 0.0531 | 0.2136 | 212.125 | 0.335 | 0.3619 | 0.3113 | 0.352 | 0.3074 |
Table 10. Lane 3 Results of Mid- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0609 | 0.2508 | 96.2071 | 0.3548 | 0.0571 | 0.0505 | 0.0572 | 0.0482 |
| MAE | 0.0575 | 0.2394 | 94.3022 | 0.3454 | 0.2318 | 0.2229 | 0.2367 | 0.2181 |
| MAPE | 0.0519 | 0.2263 | 102.200 | 0.3273 | 94.2455 | 96.1922 | 95.3241 | 92.207 |
| RMSE | 0.0529 | 0.2303 | 99.5245 | 0.3301 | 0.3471 | 0.3243 | 0.3426 | 0.3152 |
Table 11. Lane 4 Results of Mid- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0558 | 0.234 | 103.638 | 0.344 | 0.0623 | 0.0568 | 0.0633 | 0.0527 |
| MAE | 0.0558 | 0.231 | 106.871 | 0.3444 | 0.2356 | 0.2311 | 0.2424 | 0.2212 |
| MAPE | 0.0592 | 0.2369 | 111.1363 | 0.3567 | 120.369 | 108.1711 | 121.8748 | 103.61 |
| RMSE | 0.0614 | 0.2433 | 122.132 | 0.3626 | 0.3694 | 0.3482 | 0.366 | 0.3354 |
Table 12. Lane 5 Results of Mid- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0466 | 0.2062 | 97.0455 | 0.3161 | 0.0501 | 0.0481 | 0.0532 | 0.0438 |
| MAE | 0.0464 | 0.203 | 92.1541 | 0.3164 | 0.208 | 0.2071 | 0.219 | 0.195 |
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 24
Context: | MAPE | 113.0106 | 113.8206 | 112.6898 | 117.0394 | 112.5488 | 103.933 | 132.9332 | 101.22 |
| RMSE | 0.4187 | 0.4031 | 0.3678 | 0.3828 | 0.3798 | 0.3572 | 0.3824 | 0.3516 |
19
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 24
Context: Table 13. Lane 6 Results of Mid- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0489 | 0.2121 | 87.6774 | 0.3204 | 0.0525 | 0.0471 | 0.0518 | 0.0431 |
| MAE | 0.0474 | 0.206 | 85.8866 | 0.3166 | 0.2171 | 0.2074 | 0.214 | 0.1934 |
| MAPE | 0.047 | 0.2005 | 79.6221 | 0.3163 | 82.3698 | 78.4122 | 83.0729 | 72.358 |
| RMSE | 0.0479 | 0.2024 | 84.9838 | 0.3188 | 0.3323 | 0.3147 | 0.3299 | 0.3009 |
Table 14. Lane 7 Results of Mid- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0626 | 0.2389 | 181.982 | 0.3632 | 0.0659 | 0.0638 | 0.064 | 0.064 |
| MAE | 0.0608 | 0.2341 | 185.386 | 0.3586 | 0.2429 | 0.2409 | 0.24 | 0.2378 |
| MAPE | 0.0617 | 0.2312 | 199.948 | 0.3613 | 206.317 | 189.361 | 215.4275 | 187.08 |
| RMSE | 0.063 | 0.2336 | 194.7113 | 0.3664 | 0.3709 | 0.3674 | 0.3701 | 0.3673 |
Table 15. Lane 1 Results of Long- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0659 | 0.0671 | 0.083 | 0.0809 | 0.0852 | 0.0593 | 0.0794 | 0.0579 |
| MAE | 0.2366 | 0.2383 | 0.2693 | 0.263 | 0.2798 | 0.2193 | 0.2638 | 0.2118 |
| MAPE | 241.132 | 226.7211 | 248.7511 | 233.479 | 300.554 | 230.765 | 277.89 | 187.03 |
| RMSE | 0.3841 | 0.3899 | 0.4406 | 0.4304 | 0.4352 | 0.3692 | 0.4206 | 0.3648 |
Table 16. Lane 2 Results of Long- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0829 | 0.0769 | 0.0656 | 0.0708 | 0.0686 | 0.0601 | 0.0706 | 0.0585 |
| MAE | 0.295 | 0.281 | 0.2572 | 0.2652 | 0.258 | 0.2429 | 0.2695 | 0.2383 |
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 25
Context: | MAPE | 105.5326 | 104.6656 | 98.7492 | 101.9737 | 102.3549 | 89.6261 | 93.0246 | 80.8102 |
| RMSE | 0.3722 | 0.3656 | 0.3552 | 0.3566 | 0.3717 | 0.3446 | 0.3699 | 0.3456 |
20
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 25
Context: Table 17. Lane 3 Results of Long- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0752 | 0.0731 | 0.0718 | 0.0753 | 0.0778 | 0.0668 | 0.0773 | 0.0661 |
| MAE | 0.2755 | 0.2693 | 0.2615 | 0.2704 | 0.2663 | 0.251 | 0.275 | 0.2456 |
| MAPE | 133.262 | 137.909 | 140.439 | 145.526 | 145.677 | 131.701 | 145.838 | 125.97 |
| RMSE | 0.4055 | 0.3997 | 0.3941 | 0.4026 | 0.4154 | 0.3828 | 0.4072 | 0.3808 |
Table 18. Lane 4 Results of Long- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0613 | 0.0591 | 0.0573 | 0.0586 | 0.0618 | 0.0573 | 0.0638 | 0.0552 |
| MAE | 0.2404 | 0.2333 | 0.2237 | 0.2285 | 0.2323 | 0.2279 | 0.244 | 0.2187 |
| MAPE | 113.0647 | 111.0473 | 105.158 | 110.8312 | 105.787 | 110.0082 | 122.2279 | 100.68 |
| RMSE | 0.3655 | 0.3597 | 0.3523 | 0.3554 | 0.3674 | 0.3543 | 0.3719 | 0.3432 |
Table 19. Lane 5 Results of Long- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0649 | 0.0622 | 0.0595 | 0.0601 | 0.0652 | 0.0553 | 0.0644 | 0.0557 |
| MAE | 0.25 | 0.2414 | 0.2283 | 0.2315 | 0.2424 | 0.2236 | 0.2419 | 0.2237 |
| MAPE | 105.532 | 104.665 | 98.7492 | 101.973 | 102.354 | 89.6261 | 93.0246 | 80.810 |
| RMSE | 0.3722 | 0.3656 | 0.3552 | 0.3566 | 0.3717 | 0.3446 | 0.3699 | 0.3456 |
Table 20. Lane 6 Results of Long- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.0649 | 0.0622 | 0.0595 | 0.0601 | 0.0652 | 0.0553 | 0.0644 | 0.0557 |
| MAE | 0.25 | 0.2414 | 0.2283 | 0.2315 | 0.2424 | 0.2236 | 0.2419 | 0.2237 |
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 26
Context: Table 21. Lane 7 Results of Long- Term Prediction
| Model | Dense | CNN | LSTM | Bi-LSTM | CNN-LS
TM | TCN | TRANSFO
RMER | HYBRI
D |
| -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| Loss | 0.074 | 0.0689 | 0.0656 | 0.0633 | 0.0686 | 0.0694 | 0.076 | 0.0713 |
| MAE | 0.2603 | 0.2511 | 0.2445 | 0.2405 | 0.2515 | 0.2517 | 0.2659 | 0.2541 |
| MAPE | 180.022 | 184.296 | 205.351 | 199.304 | 197.590 | 175.629 | 244.0392 | 213.02 |
| RMSE | 0.3953 | 0.3817 | 0.3684 | 0.3633 | 0.3781 | 0.3813 | 0.402 | 0.3861 |
Table 22. Performance of Best Results of Every Outsetps for Every Models
Table 23. Best Performing Models for Short, Mid and Long Term Prediction
21
OUTSTEP
3
OUTSTEP
6
OUTSTEP
12
Model
Loss
MAE
MAPE
RMSE
Model
Loss
MAE
MAPE
RMSE
Model
Loss
MAE
MAPE
RMSE
0.0359
0.1786
70.5062
0.272
87.6774
85.8866
79.6221
84.9838
0.0573
0.2237
105.1583
0.3523
Bi-LSTM
0.0351
0.177
68.9648
0.2681
Bi-LSTM
0.31
0.319
0.322
0.335
Bi-LSTM
0.0586
0.2285
110.8312
0.3554
CNN-LSTM
0.0426
0.0362
0.0502
0.0362
CNN-LSTM
0.0501
0.208
87.5111
0.3295
CNN-LSTM
0.0618
0.2323
105.7875
0.3674
0.1908
0.1674
0.2011
0.1683
0.0446
0.1893
205.5559
0.3113
0.0553
0.2236
89.6261
0.3446
TRANSFORMER HYBRID
72.0088 0.2982
73.7934 0.2726
77.1041 0.3245
66.8132 0.2717
TRANSFORMER HYBRID
0.0518 0.0431
0.214 0.1934
83.0729 72.3582
0.3299 0.3009
TRANSFORMER HYBRID
0.0638 0.0552
0.244 0.2187
122.2279 100.6894
0.3719 0.3498
OUTSEP Model Min Loss MAE MAPE RSME
3 DENSE 0.0309 0.1628 155.4288 0.2524
6 HYBRID 0.0431 0.1934 72.3582 0.3009
12 HYBRID 0.0552 0.2187 100.6894 0.3432
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 27
Context: formswelloverall.Itcapturestemporaldependencieseffectively.BestLane:Lane6,withanMAEof0.1786andRMSEof0.272.Bi-LSTM:Performance:ShowshigherMAEandRMSEcomparedtosingleLSTM,indicatingitmightbeoverfittingonsomelanes.BestLane:Lane4,withanMAEof0.2025andRMSEof0.289.22
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 27
Context: CHAPTER5DISCUSSIONSInthischapter,wedelveintothedetailedanalysisoftheresultsobtainedfromourvariousmodelarchitecturesforlong-termtrafficforecasting.ThefocusisonevaluatingtheperformanceofeachmodelusingkeymetricssuchasLoss,MeanAbsoluteError(MAE),MeanAbsolutePercentageError(MAPE),andRootMeanSquaredError(RMSE).Byexaminingthesemetricsacrossdifferentforecastinghorizons(outsteps),weaimtoidentifythestrengthsandweaknessesofeachmodelandunderstandtheirsuitabilityfordifferenttimeframesoftrafficprediction.Short-TermPrediction(Tables1-7)DenseModel:Performance:ConsistentlygoodacrossalllaneswithlowMAEandRMSEvalues.Itperformsslightlybetterinlaneswithfewervehicles(e.g.,Lane1)comparedtomorecongestedlanes.BestLane:Lane5,withanMAEof0.1815andRMSEof0.2701.CNN:Performance:ComparabletotheDensemodelwithslightvariationsinMAEandRMSE.Itexcelsinlaneswithmoderatetrafficvolumes.BestLane:Lane5,withanMAEof0.1806andRMSEof0.2709.LSTM:Performance:SlightlyhighererrormetricsthanCNNandDensemodelsbutstillperformswelloverall.Itc
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 28
Context: f0.297.LSTM:Performance:Handlesmid-termpredictionsbetterthanshort-terminsomelanesbutoverallhighererrors.BestLane:Lane1,withanMAEof107.299andRMSEof128.627.23
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 28
Context: CNN-LSTM:Performance:Excellentinspecificlanes(e.g.,Lane1)butoverallhigherMAEandRMSEinotherlanes.BestLane:Lane6,withanMAEof0.0362andRMSEof0.0362.TCN:Performance:Generallyhighererrorratesacrossalllanes,indicatingitmaynotbethebestfitforshort-termtrafficpredictions.BestLane:Lane6,withanMAEof0.1862andRMSEof0.184.Transformer:Performance:Higherrorsinsomelanes,showingmixedresults.Itmightneedfurthertuningforshort-termpredictions.BestLane:Lane6,withanMAEof73.7934andRMSEof66.8132.HybridCNN-LSTM-Transformer:Performance:Mixedresultswithhighererrormetricsinsomelanes.Thecomplexityofthehybridmodelmightneedmoredataortuning.BestLane:Lane6,withanMAEof0.2726andRMSEof0.2717.Mid-TermPrediction(Tables8-14)DenseModel:Performance:Maintainslowerrormetricsbutslightlyhigherthaninshort-termpredictions.BestLane:Lane2,withanMAEof0.0465andRMSEof0.0531.CNN:Performance:IncreasedMAEandRMSEcomparedtoshort-termpredictions,indicatingchallengesinmid-termforecasting.BestLane:Lane1,withanMAEof0.261andRMSEof0.297.LSTM:Performa
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 29
Context: Bi-LSTM:Performance:Highererrorsinmid-termpredictions,similartoitsperformanceinshort-termpredictions.BestLane:Lane3,withanMAEof0.3454andRMSEof0.3301.CNN-LSTM:Performance:Stillperformswellinsomelanesbutshowsvariabilityinerrormetrics.BestLane:Lane3,withanMAEof0.2318andRMSEof0.3471.TCN:Performance:Consistentperformancewithmid-rangeerrors.BestLane:Lane2,withanMAEof0.1893andRMSEof0.3113.Transformer:Performance:Betterperformanceinmid-termpredictionscomparedtoshort-term,indicatingitsstrengthincapturinglongertemporaldependencies.BestLane:Lane3,withanMAEof0.2229andRMSEof0.3243.HybridCNN-LSTM-Transformer:Performance:Higherrorsinsomelanes,indicatingtheneedforfurtheroptimization.BestLane:Lane2,withanMAEof0.1807andRMSEof0.3074.Long-TermPrediction(Tables15-21)DenseModel:Performance:Maintainsareasonableperformancebutwithhighererrormetricscomparedtoshortandmid-termpredictions.BestLane:Lane4,withanMAEof0.2404andRMSEof0.3655.24
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 30
Context: CNN:Performance:Increasederrorsinlong-termpredictions,showinglimitationsinhandlingextendedforecastinghorizons.BestLane:Lane2,withanMAEof0.281andRMSEof0.4031.LSTM:Performance:SimilartoCNN,highererrorsinlong-termpredictions.BestLane:Lane2,withanMAEof0.2572andRMSEof0.3678.Bi-LSTM:Performance:PerformsslightlybetterthanLSTMbutstillwithhigherrors.BestLane:Lane2,withanMAEof0.2652andRMSEof0.3828.CNN-LSTM:Performance:SimilarperformancetoBi-LSTM,indicatingthehybridapproachmayneedoptimizationforlong-termpredictions.BestLane:Lane4,withanMAEof0.2323andRMSEof0.3674.TCN:Performance:Consistentlyhigherrors,indicatinglimitationsinhandlinglong-termpredictions.BestLane:Lane6,withanMAEof0.2236andRMSEof0.3446.Transformer:Performance:BetterthanTCNandCNN,indicatingitssuitabilityforlong-termpredictions.BestLane:Lane4,withanMAEof0.2237andRMSEof0.3523.HybridCNN-LSTM-Transformer:25
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 31
Context: TMsenhancesthemodel'sabilitytocapturebothspatialandtemporalfeatures,leadingtomoreaccurateshort-termtrafficpredictions.TheTransformermodel,however,performedpoorlywithveryhigherrorvalues,suggestingthatitstruggledwithshort-termpredictions,similartoobservationsintheliteratureregardingtheneedforlargedatasetsandfine-tuningforTransformermodels(Vaswanietal.,2017).Medium-TermForecasting(OUTSTEPS6)Inthemedium-termforecastinghorizon(outstep6),theHybridmodelintegratingCNN,LSTM,andTransformercomponentsachievedthelowestlossof0.0431onlane4.Thisresulthighlightsthestrengthofcombiningmultipleneuralnetworkarchitecturestocapture26
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 31
Context: Performance:Mixedresultswithhighererrorsinsomelanes,indicatingtheneedforfurtherrefinement.BestLane:Lane4,withanMAEof0.2187andRMSEof0.3432.Short-TermForecasting(OUTSTEPS3)Fortheshort-termforecastinghorizon(outstep3),theDensemodelachievedthelowestlossof0.0309onlane2.ThisindicatesthattheDensemodel,despiteitssimplicity,ishighlyeffectiveforshort-termtrafficpredictiontasks.Thelowlossvaluesuggeststhatthemodelcancaptureimmediatetrendsandpatternsintrafficdataaccurately.ThisfindingisconsistentwithstudiessuchasZhangetal.(2019),whereaCNNmodelincorporatingspatio-temporalfeaturesdemonstratedsuperiorperformanceinshort-termpredictions.TheCNNmodelinourstudyshowedcomparableperformancewithslightlyhigherlossanderrormetrics,whichalignswithZhangetal.'sfindingsontheeffectivenessofCNNsfortrafficforecasting.TheCNN-LSTMhybridmodel,despitehavingaslightlyhigherloss,demonstratedsignificantlylowerMAE,MAPE,andRMSEvalues.ThissupportsthefindingsofCao,Li,andChan(2020),whoshowedthatcombiningCNNsandLSTMsenhancesthemodel'
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 32
Context: fficdata.Themodel'sabilitytomaintainlowlossandrelativelylowerrormetricsoveranextendedperiodsuggestsitsrobustnessincapturinglong-rangepatternsandtrends.ThisfindingissupportedbyEmamietal.(2019)andSongetal.(2021),whoemphasizedtheimportanceofhybridmodelsinlong-termtrafficforecasting.TheTCNmodelalsoperformedwell,withalossof0.0553andthelowestMAPE,indicatingitseffectivenessinlong-termforecasting.ThisalignswiththestudybyBaietal.(2018),whichhighlightedthestrengthsofTCNsincapturinglong-rangedependenciesintime-seriesdata.TheTransformermodelcontinuedtostrugglewithhighererrormetrics,highlightingitslimitationsinthiscontext,asnotedbyVaswanietal.(2017)intheirworkonTransformermodelsrequiringextensivetuninganddataforoptimalperformance.27
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 32
Context: bothspatialandtemporalfeaturesoveramedium-termperiod.TheHybridmodel'sperformanceisconsistentwiththefindingsofHuangetal.(2023),whoemphasizedtheeffectivenessofhybridmodelsincapturingcomplextrafficdynamics.TheDensemodelalsoshowedstrongperformancewithslightlyhigherloss,butlowerMAEandRMSE,indicatingitsrobustnessformedium-termforecasting.ThisalignswiththeobservationsbyWangetal.(2021)regardingtheeffectivenessofLSTMmodelsinmedium-termtrafficprediction,particularlywhencombinedwithotherarchitecturesinahybridmodel.TheLSTMmodel,however,performedpoorlywithhigherrorvaluesacrossallmetrics,whichmaybeduetoitslimitationsinhandlingmedium-termvariabilitywithoutadditionalfeatureintegration(Wang,Su,&Ding,2021).Long-TermForecasting(OUTSTEPS12)Forthelong-termforecastinghorizon(outstep12),theHybridmodelonceagaindemonstratedsuperiorperformancewiththelowestlossof0.0552onlane5.ThisfurtherreinforcestheeffectivenessoftheHybridmodelinhandlinglong-termdependenciesandcomplexinteractionswithinthetrafficdata.Themodel'sa
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 33
Context: efindingsunderscoretheimportanceofselectingappropriatemodelsbasedonthespecificforecastinghorizon.Hybridmodelsshowsignificantpromise,particularlyformediumandlong-termforecasts,whiletheDensemodeliswell-suitedforshort-termpredictions.Theseinsightsprovideafoundationforfutureresearchandpracticalapplicationsintrafficmanagementandplanning,highlightingtheneedforadaptableandrobustforecastingmodelstailoredtodifferenttimeframes.28
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 33
Context: CHAPTER6CONCLUSIONTheanalysisofthebestperformingmodelsbasedonminimumlossforeachoutstepprovidesvaluableinsightsintothesuitabilityofdifferentmodelarchitecturesforvaryingforecastinghorizons:Short-TermForecasting(Outstep3):TheDensemodelishighlyeffective,achievingthelowestloss.Itssimplicityandabilitytoquicklyadapttoshort-termtrendsmakeitareliablechoiceforimmediatetrafficpredictiontasks.Medium-TermForecasting(Outstep6):TheHybridmodelexcels,leveragingthecombinedstrengthsofCNNs,LSTMs,andTransformers.Thisintegrationallowsthemodeltohandlethemedium-termvariabilityintrafficdataeffectively.Long-TermForecasting(Outstep12):TheHybridmodelalsoprovestobethebestchoiceforlong-termforecasting,demonstratingrobustnessincapturinglong-rangedependenciesandmaintaininglowlossoverextendedperiods.Ourfindingsareconsistentwithpreviousresearch,indicatingthatCNN-LSTMmodelsaregenerallyrobustforshort-termpredictionswhileTransformermodelsexcelinlong-termforecasting(Zhangetal.,2019;Huangetal.,2023).Thesefindingsunderscoret
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 34
Context: ther,events,andsocialactivities.Futurestudiesshouldintegrateadditionaldatasourceslikeweatherdataandeventschedulestoenhancethepredictivepoweroftrafficmodelsandbettercapturethedynamicnatureoftrafficflow.EnhancingModelComplexityandDepthFurtherexperimentationwithmorecomplexarchitectures,suchasattentionmechanisms,reinforcementlearning,andensemblelearningtechniques,couldimprovethe29
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 34
Context: CHAPTER7RECOMMENDATIONSFORFUTUREWORKTheresultsandanalysisofthisstudyprovideasolidfoundationforfurtheradvancementsintrafficcongestionforecasting.However,severalareasforimprovementandfurtherresearchhavebeenidentifiedtoenhancetheaccuracyandapplicabilityoftrafficpredictionmodels.UtilizingMorePowerfulComputationalToolsGoogleColab,whileaccessible,haslimitationsinprocessingpowerandmemory.Futureresearchshouldutilizehigh-performancecomputingclustersorcloud-basedplatformslikeAWSandGCP,whichofferscalableresourcestohandlelargerdatasetsandmorecomplexmodels,therebyimprovingefficiencyandaccuracy.ExpandingtheVarietyofDatasetsTogeneralizefindingsandimprovemodelrobustness,futurestudiesshouldincorporateavarietyofdatasetsfromdifferentlocationsandcontexts.Includingdatasetsfromdifferentcitiesandcountriescanhelpdevelopmodelsthataremoreadaptabletodiversetrafficconditionsandidentifyregion-specificfactors.IntegratingAdditionalDataSourcesTrafficcongestionisinfluencedbynumerousfactorssuchasweather,events,andsocia
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 35
Context: isciplinaryCollaborationCollaborationbetweencomputerscientists,urbanplanners,transportationengineers,andpolicymakerscanensurethatmodelsaretechnicallysoundandpracticallyrelevant.Interdisciplinarycollaborationcanalignmodelswiththeneedsofurbanplanningandtrafficmanagement.Byaddressingtheserecommendations,futureresearchcanbuildonthefindingsofthisstudytodevelopmoreaccurate,reliable,andversatiletrafficforecastingmodels.Theseimprovementswillcontributesignificantlytothefieldofintelligenttransportationsystems,ultimatelyaidinginthemanagementandmitigationoftrafficcongestioninurbanareas.30
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 35
Context: performanceoftrafficpredictionmodels.Theseapproacheshaveshownpromiseinotherdomainsandcouldenhancetheabilitytocaptureintricatetrafficpatterns.ImprovingDataPreprocessingTechniquesFutureworkshouldfocusonimprovingdatapreprocessingtechniques,includingadvancedmethodsforhandlingmissingdata,detectingandcorrectingoutliers,andnormalizingtrafficdata.Enhancedpreprocessingcanprovidehigher-qualityinputsformodels,leadingtobetterperformance.ConductingLong-TermEvaluationsLong-termevaluationsoverseveralmonthsoryearswouldprovideabetterunderstandingofmodels'stabilityandrobustnessovertime.Thisiscrucialforlong-termtrafficmanagementandurbanplanning,whereconsistentperformanceisessential.ExploringTransferLearningTransferlearning,whichinvolvesleveragingpre-trainedmodelsonnewtasks,couldbebeneficialfortrafficforecasting.Futureresearchcouldexploretransferlearningtoadaptmodelstrainedononedatasettoanother,potentiallyreducingtheneedforextensivetrainingdataandcomputationalresources.EngaginginInterdisciplinaryCollabora
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 36
Context: REFERENCESBernaś,M.,Płaczek,B.,Porwik,P.,&Pamuła,T.(2015).Segmentationofvehicledetectordataforimprovedk-nearestneighbours-basedtrafficflowprediction.IETIntelligentTransportSystems,9(3),264-274.Chen,C.,Liu,Z.,Wan,S.,Luan,J.,&Pei,Q.(2020).Trafficflowpredictionbasedondeeplearningininternetofvehicles.IEEETransactionsonIntelligentTransportationSystems,22(6),3776-3789.Emami,A.,Sarvi,M.,&AsadiBagloee,S.(2019).UsingKalmanfilteralgorithmforshort-termtrafficflowpredictioninaconnectedvehicleenvironment.JournalofModernTransportation,27,222-232.Goudarzi,S.,Kama,M.N.,Anisi,M.H.,Soleymani,S.A.,&Doctor,F.(2018).Self-organizingtrafficflowpredictionwithanoptimizeddeepbeliefnetworkforinternetofvehicles.Sensors,18(10),3459.Kong,F.,Li,J.,Jiang,B.,&Song,H.(2019).Short-termtrafficflowpredictioninsmartmultimediasystemforInternetofVehiclesbasedondeepbeliefnetwork.FutureGenerationComputerSystems,93,460-472.Olayode,I.O.,Tartibu,L.K.,Okwu,M.O.,&Severino,A.(2021).ComparativetrafficflowpredictionofaheuristicANNmode
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 36
Context: nofaheuristicANNmodelandahybridANN-PSOmodelinthetrafficflowmodellingofvehiclesatafour-waysignalizedroadintersection.Sustainability,13(19),10704.Graves,A.,&Schmidhuber,J.(2005).FramewisephonemeclassificationwithbidirectionalLSTMandotherneuralnetworkarchitectures.NeuralNetworks,18(5-6),602-610.Polson,N.G.,&Sokolov,V.O.(2017).Deeplearningforshort-termtrafficflowprediction.TransportationResearchPartC:EmergingTechnologies,79,1-17.Kong,Q.,Song,L.,&Wu,J.(2019).Urbantrafficcongestionpricingmodelwithconsiderationofcarbonemissionscost.Sustainability,11(4),1102Wang,X.,Zeng,R.,Zou,F.,Liao,L.,&Huang,F.(2022).STTF:AnEfficientTransformerModelforTrafficCongestionPrediction.NanyangTechnologicalUniversity,Singapore.Huang,X.,Jiang,Y.,Wang,J.,Lan,Y.,&Chen,H.(2023).Amulti-modalattentionneuralnetworkfortrafficflowpredictionbycapturinglong-shorttermsequencecorrelation.31
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 37
Context: dtrafficforecasting.TransportationResearchPartC:EmergingTechnologies.32
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 37
Context: Hinton,G.E.,Osindero,S.,&Teh,Y.W.(2006).Afastlearningalgorithmfordeepbeliefnets.NeuralComputation,18(7),1527-1554.Goodfellow,I.,Bengio,Y.,&Courville,A.(2016).DeepLearning.MITPress.Bernaś,M.,Kamiński,B.,&Korczak,J.(2015).Trafficforecastingwithmachinelearningmodels.InternationalConferenceonDependableSystemsandNetworks.Wang,Y.,Li,Z.,Zhang,H.,Li,H.,&Wu,J.(2020).Areviewoftrafficcongestionpredictionusingartificialintelligence.IEEETransactionsonIntelligentTransportationSystems.Sun,Y.,Wang,Y.,&Li,Z.(2021).Real-timetrafficpredictionwithbigdata:Areviewofmethodsandapplications.IEEETransactionsonIntelligentTransportationSystems.Emami,P.,Yang,L.,&Jin,L.(2019).Long-termtrafficflowpredictionusingdeeplearningbasedspatio-temporalmodeling.IEEETransactionsonIntelligentTransportationSystems.Chen,X.,etal.(2020).Exploringurbanmobilitywithbigdata:Modelingandapplications.JournalofUrbanPlanningandDevelopment.Huang,H.,etal.(2023).Integratingmachinelearningandspatio-temporalanalysisforenhancedtrafficforecasting.
####################
File: Special%20Problem%20Manuscript%20-%20Layahin.pdf
Page: 38
Context: APPENDIX
Gantt Chart
33
Integrating Spatio-Temporal Data and Advanced Machine Learning for Long-Term Traffic Congestion Forecasting: A Hybrid Approach Using STTF and BILSTM Models
sate tin
[=]
I
it
Hi
finda
i
i
!
i
it
i
####################
File: C.doc
Page: 1
Context: We're no strangers to love
You know the rules and so do I (do I)
A full commitment's what I'm thinking of
You wouldn't get this from any other guy
I just wanna tell you how I'm feeling
Gotta make you understand
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
We've known each other for so long
Your heart's been aching, but you're too shy to say it (say it)
Inside, we both know what's been going on (going on)
We know the game and we're gonna play it
And if you ask me how I'm feeling
Don't tell me you're too blind to see
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
We've known each other for so long
Your heart's been aching, but you're too shy to say it (to say it)
Inside, we both know what's been going on (going on)
We know the game and we're gonna play it
I just wanna tell you how I'm feeling
Gotta make you understand
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
##########
"""QUERY: Highlight important things"""
Consider the chat history for relevant information. Use all information included. Use as much tokens as needed. Important: If you find information separated by a | in the context, it is a table formatted in Markdown.
Final Files Sources: SP.txt - Page 1, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 1, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 2, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 3, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 4, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 5, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 6, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 7, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 8, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 9, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 10, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 11, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 12, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 13, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 14, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 15, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 16, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 17, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 18, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 19, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 20, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 21, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 22, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 23, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 24, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 25, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 26, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 27, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 28, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 29, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 30, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 31, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 32, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 33, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 34, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 35, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 36, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 37, Special%20Problem%20Manuscript%20-%20Layahin.pdf - Page 38, C.doc - Page 1
==================================================
FINAL ANSWER
Answer: This research paper focuses on **enhancing long-term traffic congestion forecasting by evaluating machine learning and deep learning models using the PeMS dataset**. Here are the key highlights:
**Problem:** Long-term traffic congestion forecasting remains a challenge due to the dynamic nature of urban traffic and the limitations of existing models in maintaining accuracy over extended periods.
**Objective:** To develop an advanced traffic forecasting model that effectively integrates spatio-temporal data to provide accurate long-term congestion predictions. This will support more informed decision-making in urban planning and traffic management.
**Methodology:**
* **Data:** The study uses the PeMS-Bay dataset, which includes six months of traffic speed data from 325 sensors in the Bay Area, Los Angeles.
* **Models:** Various machine learning and deep learning models are evaluated, including Dense, CNN, LSTM, Bi-LSTM, TCN, Transformer, and hybrid models.
* **Evaluation:** Model performance is assessed using metrics such as MAE, RMSE, and MAPE.
**Key Findings:**
* **Short-term forecasting (outstep 3):** The Dense model excels.
* **Medium-term (outstep 6) and long-term (outstep 12) forecasting:** The Hybrid model demonstrates superior performance.
**Recommendations for Future Work:**
* Utilize more powerful computational tools (e.g., AWS or GCP) to handle larger datasets and more complex models.
* Expand the variety of datasets from different locations and contexts to improve model robustness and generalizability.
* Integrate additional data sources (e.g., weather and events) to enhance model accuracy.
* Engage in interdisciplinary collaboration to ensure practical relevance and technical soundness of developed models.
**Important Tables:**
* **Table 23: Best Performing Models for Short, Mid, and Long Term Prediction**
| OUTSEP | Model | Min Loss | MAE | MAPE | RSME |
| :----- | :------- | :------- | :------- | :--------- | :------- |
| 3 | DENSE | 0.0309 | 0.1628 | 155.4288 | 0.2524 |
| 6 | HYBRID | 0.0431 | 0.1934 | 72.3582 | 0.3009 |
| 12 | HYBRID | 0.0552 | 0.2187 | 100.6894 | 0.3432 |
**Conclusion:**
The study highlights the importance of selecting appropriate models based on the specific forecasting horizon. Hybrid models show significant promise for medium and long-term forecasts, while the Dense model is well-suited for short-term predictions. These insights provide a foundation for future research and practical applications in traffic management and planning.
==================================================