{ "query": "#### Teil 1: Definitions- und Wertemenge\nGegeben ist die quadratische Funktion \\( f(x) = 2x^2 - 4x + 1 \\).\n\n1. Bestimme die Definitionsmenge \\( D_f \\) der Funktion \\( f(x) \\).\n2. Bestimme die Wertemenge \\( W_f \\) der Funktion \\( f(x) \\).", "namespace": "3f02d541-5e32-4450-a8c8-f2d46f924be0", "messages": [ { "role": "assistant", "content": "\ud83e\udd16\u2728 Hallo, ich bin Simon, Ihr pers\u00f6nlicher Assistent! \ud83c\udf1f Wie kann ich Ihnen heute behilflich sein? Lassen Sie uns gemeinsam Ihre Fragen kl\u00e4ren, Herausforderungen meistern und Ihre Ziele erreichen! Einfach fragen, und ich bin f\u00fcr Sie da." }, { "role": "user", "content": "What is this about?" }, { "role": "assistant", "content": "This is a collection of prompts related to the topic of automated guided vehicles (AGVs) and their use in manufacturing. The prompts are designed to test the capabilities of large language models (LLMs) in understanding and responding to complex requests related to AGV systems. \n\nThe prompts cover a range of topics, including:\n\n* **Equipment and Pricing:** Listing and calculating the cost of different AGV components like loaders, robots, and buffers.\n* **Location and Installation:** Identifying relevant AGV locations based on customer locations and specifying installation requirements.\n* **Workpiece Information:** Listing workpiece types, dimensions, and weights, including specific details for crankshafts.\n* **Component and Process Identification:** Identifying components and processes required for AGV systems based on customer documents.\n* **Timeline and Event Management:** Specifying timelines for various events related to AGV projects, such as order placement, delivery, and installation.\n* **Customer and Sales Information:** Identifying customers, end customers, and sales managers involved in AGV projects.\n* **Service and Tariff Information:** Providing details on various Vodafone mobile plans, including pricing, data allowances, and contract terms.\n\nThe prompts are designed to test the LLMs' ability to:\n\n* **Understand and interpret complex instructions.**\n* **Extract relevant information from provided documents.**\n* **Organize and present information in a structured format.**\n* **Perform calculations and generate responses based on provided data.**\n* **Identify and address potential ambiguities or missing information.**\n\nThe prompts are valuable for evaluating the capabilities of LLMs in handling real-world tasks related to AGV systems and telecommunications services.\n" }, { "role": "user", "content": "#### Teil 1: Definitions- und Wertemenge\nGegeben ist die quadratische Funktion \\( f(x) = 2x^2 - 4x + 1 \\).\n\n1. Bestimme die Definitionsmenge \\( D_f \\) der Funktion \\( f(x) \\).\n2. Bestimme die Wertemenge \\( W_f \\) der Funktion \\( f(x) \\)." }, { "role": "assistant", "content": "" } ], "stream": true, "language_level": "", "chat_channel": ":4012:1726638599154", "language": "German", "tone": "neutral", "writing_style": "standard", "model": "gemini-1.5-flash", "knowledgebase": "ki-dev-large", "seed": 1, "client_id": 1726638599154, "all_context": false, "follow_up_for": null, "knowledgebase_files_count": 2, "override_command": null, "disable_clarity_check": false, "custom_primer": "", "logging": true, "query_route": "" } INITIALIZATION Knowledgebase: ki-dev-large Base Query: #### Teil 1: Definitions- und Wertemenge Gegeben ist die quadratische Funktion \( f(x) = 2x^2 - 4x + 1 \). 1. Bestimme die Definitionsmenge \( D_f \) der Funktion \( f(x) \). 2. Bestimme die Wertemenge \( W_f \) der Funktion \( f(x) \). Model: gemini-1.5-flash Use Curl?: None ================================================== **Elapsed Time: 0.00 seconds** ================================================== ROUTING Query type: research ================================================== **Elapsed Time: 2.16 seconds** ================================================== RAG PARAMETERS Max Context To Include: 20 Lowest Score to Consider: 0.5 ================================================== **Elapsed Time: 0.14 seconds** ================================================== VECTOR SEARCH ALGORITHM TO USE Use MMR search?: False Use Similarity search?: True ================================================== **Elapsed Time: 0.11 seconds** ================================================== VECTOR SEARCH DONE ================================================== **Elapsed Time: 1.04 seconds** ================================================== PRIMER Primer: You are Simon, a highly intelligent personal assistant in a system called KIOS. You are a chatbot that can read knowledgebases through the "CONTEXT" that is included in the user's chat message. Your role is to act as an expert at reading the information provided by the user and giving the most relevant information. In your responses to enterprise users, prioritize clarity, trustworthiness, and appropriate formality. Be honest by admitting when a topic falls outside your scope of knowledge, and suggest alternative avenues for obtaining information when necessary. Make effective use of chat history to avoid redundancy and enhance response relevance, continuously adapting to integrate all necessary details in your interactions. Focus on precision and accuracy of your answers information. ================================================== **Elapsed Time: 0.18 seconds** ================================================== FINAL QUERY Final Query: CONTEXT: """QUERY: #### Teil 1: Definitions- und Wertemenge Gegeben ist die quadratische Funktion \( f(x) = 2x^2 - 4x + 1 \). 1. Bestimme die Definitionsmenge \( D_f \) der Funktion \( f(x) \). 2. Bestimme die Wertemenge \( W_f \) der Funktion \( f(x) \).""" Consider the chat history for relevant information.Important: Take a look at the QUERY and only the QUERY. If this is vague or unclear, please ignore everything and ask a follow-up question instead! Final Files Sources: ================================================== **Elapsed Time: 0.00 seconds** ================================================== FINAL ANSWER Answer: ## Teil 1: Definitions- und Wertemenge **1. Definitionsmenge \(D_f\):** Die Definitionsmenge einer quadratischen Funktion ist immer die Menge aller reellen Zahlen. Das bedeutet, dass man für \(x\) jeden beliebigen Wert einsetzen kann. Daher ist die Definitionsmenge \(D_f = \mathbb{R}\). **2. Wertemenge \(W_f\):** Um die Wertemenge zu bestimmen, müssen wir die Funktionsgleichung in Scheitelform umformen. Dazu verwenden wir die quadratische Ergänzung: ``` f(x) = 2x^2 - 4x + 1 = 2(x^2 - 2x) + 1 = 2(x^2 - 2x + 1 - 1) + 1 = 2(x - 1)^2 - 2 + 1 = 2(x - 1)^2 - 1 ``` Die Scheitelform der Funktion ist \(f(x) = 2(x - 1)^2 - 1\). Der Scheitelpunkt liegt bei \(S(1, -1)\). Da der Koeffizient vor dem quadratischen Term positiv ist, ist die Parabel nach oben geöffnet. Daher ist die Wertemenge \(W_f = [-1, \infty)\). **Zusammenfassend:** * **Definitionsmenge:** \(D_f = \mathbb{R}\) * **Wertemenge:** \(W_f = [-1, \infty)\) ================================================== **Elapsed Time: 2.09 seconds** ==================================================